\left\{ \begin{array} { l } { 2 x - 7 y = - 5 } \\ { 5 x + 3 y = 8 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=1
y=1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-7y=-5,5x+3y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-7y=-5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=7y-5
समीकरणको दुबैतिर 7y जोड्नुहोस्।
x=\frac{1}{2}\left(7y-5\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{7}{2}y-\frac{5}{2}
\frac{1}{2} लाई 7y-5 पटक गुणन गर्नुहोस्।
5\left(\frac{7}{2}y-\frac{5}{2}\right)+3y=8
\frac{7y-5}{2} लाई x ले अर्को समीकरण 5x+3y=8 मा प्रतिस्थापन गर्नुहोस्।
\frac{35}{2}y-\frac{25}{2}+3y=8
5 लाई \frac{7y-5}{2} पटक गुणन गर्नुहोस्।
\frac{41}{2}y-\frac{25}{2}=8
3y मा \frac{35y}{2} जोड्नुहोस्
\frac{41}{2}y=\frac{41}{2}
समीकरणको दुबैतिर \frac{25}{2} जोड्नुहोस्।
y=1
समीकरणको दुबैतिर \frac{41}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{7-5}{2}
x=\frac{7}{2}y-\frac{5}{2} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{5}{2} लाई \frac{7}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।
2x-7y=-5,5x+3y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-7\\5&3\end{matrix}\right))\left(\begin{matrix}2&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-7\\5&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\5&3\end{matrix}\right))\left(\begin{matrix}-5\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-7\times 5\right)}&-\frac{-7}{2\times 3-\left(-7\times 5\right)}\\-\frac{5}{2\times 3-\left(-7\times 5\right)}&\frac{2}{2\times 3-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-5\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}&\frac{7}{41}\\-\frac{5}{41}&\frac{2}{41}\end{matrix}\right)\left(\begin{matrix}-5\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}\left(-5\right)+\frac{7}{41}\times 8\\-\frac{5}{41}\left(-5\right)+\frac{2}{41}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-7y=-5,5x+3y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5\times 2x+5\left(-7\right)y=5\left(-5\right),2\times 5x+2\times 3y=2\times 8
2x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
10x-35y=-25,10x+6y=16
सरल गर्नुहोस्।
10x-10x-35y-6y=-25-16
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 10x-35y=-25 बाट 10x+6y=16 घटाउनुहोस्।
-35y-6y=-25-16
-10x मा 10x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 10x र -10x राशी रद्द हुन्छन्।
-41y=-25-16
-6y मा -35y जोड्नुहोस्
-41y=-41
-16 मा -25 जोड्नुहोस्
y=1
दुबैतिर -41 ले भाग गर्नुहोस्।
5x+3=8
5x+3y=8 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
5x=5
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=1
दुबैतिर 5 ले भाग गर्नुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}