\left\{ \begin{array} { l } { 2 x - 3 y - 10 = 0 } \\ { 7 y = - 17 - 8 x } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=\frac{1}{2}=0.5
y=-3
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-3y=10
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 10 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
7y+8x=-17
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 8x थप्नुहोस्।
2x-3y=10,8x+7y=-17
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-3y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=3y+10
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{2}\left(3y+10\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{3}{2}y+5
\frac{1}{2} लाई 3y+10 पटक गुणन गर्नुहोस्।
8\left(\frac{3}{2}y+5\right)+7y=-17
\frac{3y}{2}+5 लाई x ले अर्को समीकरण 8x+7y=-17 मा प्रतिस्थापन गर्नुहोस्।
12y+40+7y=-17
8 लाई \frac{3y}{2}+5 पटक गुणन गर्नुहोस्।
19y+40=-17
7y मा 12y जोड्नुहोस्
19y=-57
समीकरणको दुबैतिरबाट 40 घटाउनुहोस्।
y=-3
दुबैतिर 19 ले भाग गर्नुहोस्।
x=\frac{3}{2}\left(-3\right)+5
x=\frac{3}{2}y+5 मा y लाई -3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{9}{2}+5
\frac{3}{2} लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{1}{2}
-\frac{9}{2} मा 5 जोड्नुहोस्
x=\frac{1}{2},y=-3
अब प्रणाली समाधान भएको छ।
2x-3y=10
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 10 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
7y+8x=-17
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 8x थप्नुहोस्।
2x-3y=10,8x+7y=-17
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-3\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-17\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}2&-3\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-3\\8&7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-\left(-3\times 8\right)}&-\frac{-3}{2\times 7-\left(-3\times 8\right)}\\-\frac{8}{2\times 7-\left(-3\times 8\right)}&\frac{2}{2\times 7-\left(-3\times 8\right)}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&\frac{3}{38}\\-\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 10+\frac{3}{38}\left(-17\right)\\-\frac{4}{19}\times 10+\frac{1}{19}\left(-17\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{1}{2},y=-3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-3y=10
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 10 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
7y+8x=-17
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 8x थप्नुहोस्।
2x-3y=10,8x+7y=-17
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
8\times 2x+8\left(-3\right)y=8\times 10,2\times 8x+2\times 7y=2\left(-17\right)
2x र 8x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 8 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
16x-24y=80,16x+14y=-34
सरल गर्नुहोस्।
16x-16x-24y-14y=80+34
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 16x-24y=80 बाट 16x+14y=-34 घटाउनुहोस्।
-24y-14y=80+34
-16x मा 16x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 16x र -16x राशी रद्द हुन्छन्।
-38y=80+34
-14y मा -24y जोड्नुहोस्
-38y=114
34 मा 80 जोड्नुहोस्
y=-3
दुबैतिर -38 ले भाग गर्नुहोस्।
8x+7\left(-3\right)=-17
8x+7y=-17 मा y लाई -3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
8x-21=-17
7 लाई -3 पटक गुणन गर्नुहोस्।
8x=4
समीकरणको दुबैतिर 21 जोड्नुहोस्।
x=\frac{1}{2}
दुबैतिर 8 ले भाग गर्नुहोस्।
x=\frac{1}{2},y=-3
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}