\left\{ \begin{array} { l } { 2 x - 3 y = 5 } \\ { 3 x - 2 y = 5 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=1
y=-1
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left\{ \begin{array} { l } { 2 x - 3 y = 5 } \\ { 3 x - 2 y = 5 } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-3y=5,3x-2y=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-3y=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=3y+5
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{2}\left(3y+5\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{3}{2}y+\frac{5}{2}
\frac{1}{2} लाई 3y+5 पटक गुणन गर्नुहोस्।
3\left(\frac{3}{2}y+\frac{5}{2}\right)-2y=5
\frac{3y+5}{2} लाई x ले अर्को समीकरण 3x-2y=5 मा प्रतिस्थापन गर्नुहोस्।
\frac{9}{2}y+\frac{15}{2}-2y=5
3 लाई \frac{3y+5}{2} पटक गुणन गर्नुहोस्।
\frac{5}{2}y+\frac{15}{2}=5
-2y मा \frac{9y}{2} जोड्नुहोस्
\frac{5}{2}y=-\frac{5}{2}
समीकरणको दुबैतिरबाट \frac{15}{2} घटाउनुहोस्।
y=-1
समीकरणको दुबैतिर \frac{5}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{3}{2}\left(-1\right)+\frac{5}{2}
x=\frac{3}{2}y+\frac{5}{2} मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-3+5}{2}
\frac{3}{2} लाई -1 पटक गुणन गर्नुहोस्।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{2} लाई -\frac{3}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=-1
अब प्रणाली समाधान भएको छ।
2x-3y=5,3x-2y=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-3\\3&-2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 5+\frac{3}{5}\times 5\\-\frac{3}{5}\times 5+\frac{2}{5}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=-1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-3y=5,3x-2y=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 2x+3\left(-3\right)y=3\times 5,2\times 3x+2\left(-2\right)y=2\times 5
2x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
6x-9y=15,6x-4y=10
सरल गर्नुहोस्।
6x-6x-9y+4y=15-10
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x-9y=15 बाट 6x-4y=10 घटाउनुहोस्।
-9y+4y=15-10
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
-5y=15-10
4y मा -9y जोड्नुहोस्
-5y=5
-10 मा 15 जोड्नुहोस्
y=-1
दुबैतिर -5 ले भाग गर्नुहोस्।
3x-2\left(-1\right)=5
3x-2y=5 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x+2=5
-2 लाई -1 पटक गुणन गर्नुहोस्।
3x=3
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=1
दुबैतिर 3 ले भाग गर्नुहोस्।
x=1,y=-1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}