\left\{ \begin{array} { l } { 2 x - 3 y = 0 } \\ { x - 2 y - 1 = 0 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=-3
y=-2
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-3y=0,x-2y-1=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-3y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=3y
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{2}\times 3y
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{3}{2}y
\frac{1}{2} लाई 3y पटक गुणन गर्नुहोस्।
\frac{3}{2}y-2y-1=0
\frac{3y}{2} लाई x ले अर्को समीकरण x-2y-1=0 मा प्रतिस्थापन गर्नुहोस्।
-\frac{1}{2}y-1=0
-2y मा \frac{3y}{2} जोड्नुहोस्
-\frac{1}{2}y=1
समीकरणको दुबैतिर 1 जोड्नुहोस्।
y=-2
दुबैतिर -2 ले गुणन गर्नुहोस्।
x=\frac{3}{2}\left(-2\right)
x=\frac{3}{2}y मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-3
\frac{3}{2} लाई -2 पटक गुणन गर्नुहोस्।
x=-3,y=-2
अब प्रणाली समाधान भएको छ।
2x-3y=0,x-2y-1=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-3\\1&-2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\right)}\\-\frac{1}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
x=-3,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-3y=0,x-2y-1=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x-3y=0,2x+2\left(-2\right)y+2\left(-1\right)=0
2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
2x-3y=0,2x-4y-2=0
सरल गर्नुहोस्।
2x-2x-3y+4y+2=0
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x-3y=0 बाट 2x-4y-2=0 घटाउनुहोस्।
-3y+4y+2=0
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
y+2=0
4y मा -3y जोड्नुहोस्
y=-2
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x-2\left(-2\right)-1=0
x-2y-1=0 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+4-1=0
-2 लाई -2 पटक गुणन गर्नुहोस्।
x+3=0
-1 मा 4 जोड्नुहोस्
x=-3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=-3,y=-2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}