मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+y-6=0,2x+2y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+y-6=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x+y=6
समीकरणको दुबैतिर 6 जोड्नुहोस्।
2x=-y+6
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{2}\left(-y+6\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{1}{2}y+3
\frac{1}{2} लाई -y+6 पटक गुणन गर्नुहोस्।
2\left(-\frac{1}{2}y+3\right)+2y=0
-\frac{y}{2}+3 लाई x ले अर्को समीकरण 2x+2y=0 मा प्रतिस्थापन गर्नुहोस्।
-y+6+2y=0
2 लाई -\frac{y}{2}+3 पटक गुणन गर्नुहोस्।
y+6=0
2y मा -y जोड्नुहोस्
y=-6
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
x=-\frac{1}{2}\left(-6\right)+3
x=-\frac{1}{2}y+3 मा y लाई -6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3+3
-\frac{1}{2} लाई -6 पटक गुणन गर्नुहोस्।
x=6
3 मा 3 जोड्नुहोस्
x=6,y=-6
अब प्रणाली समाधान भएको छ।
2x+y-6=0,2x+2y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&1\\2&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-2}&-\frac{1}{2\times 2-2}\\-\frac{2}{2\times 2-2}&\frac{2}{2\times 2-2}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\-1&1\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
x=6,y=-6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+y-6=0,2x+2y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x-2x+y-2y-6=0
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+y-6=0 बाट 2x+2y=0 घटाउनुहोस्।
y-2y-6=0
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
-y-6=0
-2y मा y जोड्नुहोस्
-y=6
समीकरणको दुबैतिर 6 जोड्नुहोस्।
y=-6
दुबैतिर -1 ले भाग गर्नुहोस्।
2x+2\left(-6\right)=0
2x+2y=0 मा y लाई -6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x-12=0
2 लाई -6 पटक गुणन गर्नुहोस्।
2x=12
समीकरणको दुबैतिर 12 जोड्नुहोस्।
x=6
दुबैतिर 2 ले भाग गर्नुहोस्।
x=6,y=-6
अब प्रणाली समाधान भएको छ।