मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+3y-4=0,x+3y=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+3y-4=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x+3y=4
समीकरणको दुबैतिर 4 जोड्नुहोस्।
2x=-3y+4
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{2}\left(-3y+4\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y+2
\frac{1}{2} लाई -3y+4 पटक गुणन गर्नुहोस्।
-\frac{3}{2}y+2+3y=5
-\frac{3y}{2}+2 लाई x ले अर्को समीकरण x+3y=5 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{2}y+2=5
3y मा -\frac{3y}{2} जोड्नुहोस्
\frac{3}{2}y=3
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
y=2
समीकरणको दुबैतिर \frac{3}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{2}\times 2+2
x=-\frac{3}{2}y+2 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-3+2
-\frac{3}{2} लाई 2 पटक गुणन गर्नुहोस्।
x=-1
-3 मा 2 जोड्नुहोस्
x=-1,y=2
अब प्रणाली समाधान भएको छ।
2x+3y-4=0,x+3y=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&3\\1&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-5\\-\frac{1}{3}\times 4+\frac{2}{3}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+3y-4=0,x+3y=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x-x+3y-3y-4=-5
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+3y-4=0 बाट x+3y=5 घटाउनुहोस्।
2x-x-4=-5
-3y मा 3y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3y र -3y राशी रद्द हुन्छन्।
x-4=-5
-x मा 2x जोड्नुहोस्
x=-1
समीकरणको दुबैतिर 4 जोड्नुहोस्।
-1+3y=5
x+3y=5 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
3y=6
समीकरणको दुबैतिर 1 जोड्नुहोस्।
x=-1,y=2
अब प्रणाली समाधान भएको छ।