मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+14y=-28,-4x-14y=28
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+14y=-28
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-14y-28
समीकरणको दुबैतिरबाट 14y घटाउनुहोस्।
x=\frac{1}{2}\left(-14y-28\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-7y-14
\frac{1}{2} लाई -14y-28 पटक गुणन गर्नुहोस्।
-4\left(-7y-14\right)-14y=28
-7y-14 लाई x ले अर्को समीकरण -4x-14y=28 मा प्रतिस्थापन गर्नुहोस्।
28y+56-14y=28
-4 लाई -7y-14 पटक गुणन गर्नुहोस्।
14y+56=28
-14y मा 28y जोड्नुहोस्
14y=-28
समीकरणको दुबैतिरबाट 56 घटाउनुहोस्।
y=-2
दुबैतिर 14 ले भाग गर्नुहोस्।
x=-7\left(-2\right)-14
x=-7y-14 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=14-14
-7 लाई -2 पटक गुणन गर्नुहोस्।
x=0
14 मा -14 जोड्नुहोस्
x=0,y=-2
अब प्रणाली समाधान भएको छ।
2x+14y=-28,-4x-14y=28
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\28\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&14\\-4&-14\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{2\left(-14\right)-14\left(-4\right)}&-\frac{14}{2\left(-14\right)-14\left(-4\right)}\\-\frac{-4}{2\left(-14\right)-14\left(-4\right)}&\frac{2}{2\left(-14\right)-14\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\\frac{1}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-28\right)-\frac{1}{2}\times 28\\\frac{1}{7}\left(-28\right)+\frac{1}{14}\times 28\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=0,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+14y=-28,-4x-14y=28
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-4\times 2x-4\times 14y=-4\left(-28\right),2\left(-4\right)x+2\left(-14\right)y=2\times 28
2x र -4x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -4 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
-8x-56y=112,-8x-28y=56
सरल गर्नुहोस्।
-8x+8x-56y+28y=112-56
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -8x-56y=112 बाट -8x-28y=56 घटाउनुहोस्।
-56y+28y=112-56
8x मा -8x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -8x र 8x राशी रद्द हुन्छन्।
-28y=112-56
28y मा -56y जोड्नुहोस्
-28y=56
-56 मा 112 जोड्नुहोस्
y=-2
दुबैतिर -28 ले भाग गर्नुहोस्।
-4x-14\left(-2\right)=28
-4x-14y=28 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-4x+28=28
-14 लाई -2 पटक गुणन गर्नुहोस्।
-4x=0
समीकरणको दुबैतिरबाट 28 घटाउनुहोस्।
x=0
दुबैतिर -4 ले भाग गर्नुहोस्।
x=0,y=-2
अब प्रणाली समाधान भएको छ।