मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-8x+4y=24,-7x+7y=28
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-8x+4y=24
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-8x=-4y+24
समीकरणको दुबैतिरबाट 4y घटाउनुहोस्।
x=-\frac{1}{8}\left(-4y+24\right)
दुबैतिर -8 ले भाग गर्नुहोस्।
x=\frac{1}{2}y-3
-\frac{1}{8} लाई -4y+24 पटक गुणन गर्नुहोस्।
-7\left(\frac{1}{2}y-3\right)+7y=28
\frac{y}{2}-3 लाई x ले अर्को समीकरण -7x+7y=28 मा प्रतिस्थापन गर्नुहोस्।
-\frac{7}{2}y+21+7y=28
-7 लाई \frac{y}{2}-3 पटक गुणन गर्नुहोस्।
\frac{7}{2}y+21=28
7y मा -\frac{7y}{2} जोड्नुहोस्
\frac{7}{2}y=7
समीकरणको दुबैतिरबाट 21 घटाउनुहोस्।
y=2
समीकरणको दुबैतिर \frac{7}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{1}{2}\times 2-3
x=\frac{1}{2}y-3 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1-3
\frac{1}{2} लाई 2 पटक गुणन गर्नुहोस्।
x=-2
1 मा -3 जोड्नुहोस्
x=-2,y=2
अब प्रणाली समाधान भएको छ।
-8x+4y=24,-7x+7y=28
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\28\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-8&4\\-7&7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-4\left(-7\right)}&-\frac{4}{-8\times 7-4\left(-7\right)}\\-\frac{-7}{-8\times 7-4\left(-7\right)}&-\frac{8}{-8\times 7-4\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{7}\\-\frac{1}{4}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 24+\frac{1}{7}\times 28\\-\frac{1}{4}\times 24+\frac{2}{7}\times 28\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-2,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-8x+4y=24,-7x+7y=28
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-7\left(-8\right)x-7\times 4y=-7\times 24,-8\left(-7\right)x-8\times 7y=-8\times 28
-8x र -7x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -7 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -8 ले गुणन गर्नुहोस्।
56x-28y=-168,56x-56y=-224
सरल गर्नुहोस्।
56x-56x-28y+56y=-168+224
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 56x-28y=-168 बाट 56x-56y=-224 घटाउनुहोस्।
-28y+56y=-168+224
-56x मा 56x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 56x र -56x राशी रद्द हुन्छन्।
28y=-168+224
56y मा -28y जोड्नुहोस्
28y=56
224 मा -168 जोड्नुहोस्
y=2
दुबैतिर 28 ले भाग गर्नुहोस्।
-7x+7\times 2=28
-7x+7y=28 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-7x+14=28
7 लाई 2 पटक गुणन गर्नुहोस्।
-7x=14
समीकरणको दुबैतिरबाट 14 घटाउनुहोस्।
x=-2
दुबैतिर -7 ले भाग गर्नुहोस्।
x=-2,y=2
अब प्रणाली समाधान भएको छ।