\left\{ \begin{array} { l } { - 3 x + 5 y = 1 } \\ { 4 x - y = 10 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=3
y=2
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
-3x+5y=1,4x-y=10
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-3x+5y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-3x=-5y+1
समीकरणको दुबैतिरबाट 5y घटाउनुहोस्।
x=-\frac{1}{3}\left(-5y+1\right)
दुबैतिर -3 ले भाग गर्नुहोस्।
x=\frac{5}{3}y-\frac{1}{3}
-\frac{1}{3} लाई -5y+1 पटक गुणन गर्नुहोस्।
4\left(\frac{5}{3}y-\frac{1}{3}\right)-y=10
\frac{5y-1}{3} लाई x ले अर्को समीकरण 4x-y=10 मा प्रतिस्थापन गर्नुहोस्।
\frac{20}{3}y-\frac{4}{3}-y=10
4 लाई \frac{5y-1}{3} पटक गुणन गर्नुहोस्।
\frac{17}{3}y-\frac{4}{3}=10
-y मा \frac{20y}{3} जोड्नुहोस्
\frac{17}{3}y=\frac{34}{3}
समीकरणको दुबैतिर \frac{4}{3} जोड्नुहोस्।
y=2
समीकरणको दुबैतिर \frac{17}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{5}{3}\times 2-\frac{1}{3}
x=\frac{5}{3}y-\frac{1}{3} मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{10-1}{3}
\frac{5}{3} लाई 2 पटक गुणन गर्नुहोस्।
x=3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{1}{3} लाई \frac{10}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=3,y=2
अब प्रणाली समाधान भएको छ।
-3x+5y=1,4x-y=10
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-3&5\\4&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-5\times 4}&-\frac{5}{-3\left(-1\right)-5\times 4}\\-\frac{4}{-3\left(-1\right)-5\times 4}&-\frac{3}{-3\left(-1\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{5}{17}\\\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{5}{17}\times 10\\\frac{4}{17}+\frac{3}{17}\times 10\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-3x+5y=1,4x-y=10
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4\left(-3\right)x+4\times 5y=4,-3\times 4x-3\left(-1\right)y=-3\times 10
-3x र 4x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस्।
-12x+20y=4,-12x+3y=-30
सरल गर्नुहोस्।
-12x+12x+20y-3y=4+30
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -12x+20y=4 बाट -12x+3y=-30 घटाउनुहोस्।
20y-3y=4+30
12x मा -12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -12x र 12x राशी रद्द हुन्छन्।
17y=4+30
-3y मा 20y जोड्नुहोस्
17y=34
30 मा 4 जोड्नुहोस्
y=2
दुबैतिर 17 ले भाग गर्नुहोस्।
4x-2=10
4x-y=10 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
4x=12
समीकरणको दुबैतिर 2 जोड्नुहोस्।
x=3
दुबैतिर 4 ले भाग गर्नुहोस्।
x=3,y=2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}