\left\{ \begin{array} { l } { - 2 = 3 x + y } \\ { 2 = - 7 x + y } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=-\frac{2}{5}=-0.4
y=-\frac{4}{5}=-0.8
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left\{ \begin{array} { l } { - 2 = 3 x + y } \\ { 2 = - 7 x + y } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x+y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-7x+y=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3x+y=-2,-7x+y=2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+y=-2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-y-2
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{3}\left(-y-2\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{1}{3}y-\frac{2}{3}
\frac{1}{3} लाई -y-2 पटक गुणन गर्नुहोस्।
-7\left(-\frac{1}{3}y-\frac{2}{3}\right)+y=2
\frac{-y-2}{3} लाई x ले अर्को समीकरण -7x+y=2 मा प्रतिस्थापन गर्नुहोस्।
\frac{7}{3}y+\frac{14}{3}+y=2
-7 लाई \frac{-y-2}{3} पटक गुणन गर्नुहोस्।
\frac{10}{3}y+\frac{14}{3}=2
y मा \frac{7y}{3} जोड्नुहोस्
\frac{10}{3}y=-\frac{8}{3}
समीकरणको दुबैतिरबाट \frac{14}{3} घटाउनुहोस्।
y=-\frac{4}{5}
समीकरणको दुबैतिर \frac{10}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{3}\left(-\frac{4}{5}\right)-\frac{2}{3}
x=-\frac{1}{3}y-\frac{2}{3} मा y लाई -\frac{4}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{4}{15}-\frac{2}{3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{1}{3} लाई -\frac{4}{5} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-\frac{2}{5}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{2}{3} लाई \frac{4}{15} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-\frac{2}{5},y=-\frac{4}{5}
अब प्रणाली समाधान भएको छ।
3x+y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-7x+y=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3x+y=-2,-7x+y=2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&1\\-7&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-7\right)}&-\frac{1}{3-\left(-7\right)}\\-\frac{-7}{3-\left(-7\right)}&\frac{3}{3-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{10}\\\frac{7}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-2\right)-\frac{1}{10}\times 2\\\frac{7}{10}\left(-2\right)+\frac{3}{10}\times 2\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\-\frac{4}{5}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{2}{5},y=-\frac{4}{5}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-7x+y=2
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3x+y=-2,-7x+y=2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+7x+y-y=-2-2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+y=-2 बाट -7x+y=2 घटाउनुहोस्।
3x+7x=-2-2
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
10x=-2-2
7x मा 3x जोड्नुहोस्
10x=-4
-2 मा -2 जोड्नुहोस्
x=-\frac{2}{5}
दुबैतिर 10 ले भाग गर्नुहोस्।
-7\left(-\frac{2}{5}\right)+y=2
-7x+y=2 मा x लाई -\frac{2}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
\frac{14}{5}+y=2
-7 लाई -\frac{2}{5} पटक गुणन गर्नुहोस्।
y=-\frac{4}{5}
समीकरणको दुबैतिरबाट \frac{14}{5} घटाउनुहोस्।
x=-\frac{2}{5},y=-\frac{4}{5}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}