\left\{ \begin{array} { l } { - 10 x - 3 y = 9 } \\ { - 5 x + 5 y = - 2 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=-\frac{3}{5}=-0.6
y=-1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
-10x-3y=9,-5x+5y=-2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-10x-3y=9
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-10x=3y+9
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=-\frac{1}{10}\left(3y+9\right)
दुबैतिर -10 ले भाग गर्नुहोस्।
x=-\frac{3}{10}y-\frac{9}{10}
-\frac{1}{10} लाई 9+3y पटक गुणन गर्नुहोस्।
-5\left(-\frac{3}{10}y-\frac{9}{10}\right)+5y=-2
\frac{-3y-9}{10} लाई x ले अर्को समीकरण -5x+5y=-2 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{2}y+\frac{9}{2}+5y=-2
-5 लाई \frac{-3y-9}{10} पटक गुणन गर्नुहोस्।
\frac{13}{2}y+\frac{9}{2}=-2
5y मा \frac{3y}{2} जोड्नुहोस्
\frac{13}{2}y=-\frac{13}{2}
समीकरणको दुबैतिरबाट \frac{9}{2} घटाउनुहोस्।
y=-1
समीकरणको दुबैतिर \frac{13}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{10}\left(-1\right)-\frac{9}{10}
x=-\frac{3}{10}y-\frac{9}{10} मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{3-9}{10}
-\frac{3}{10} लाई -1 पटक गुणन गर्नुहोस्।
x=-\frac{3}{5}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{9}{10} लाई \frac{3}{10} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-\frac{3}{5},y=-1
अब प्रणाली समाधान भएको छ।
-10x-3y=9,-5x+5y=-2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{-3}{-10\times 5-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{10}{-10\times 5-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{3}{65}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 9-\frac{3}{65}\left(-2\right)\\-\frac{1}{13}\times 9+\frac{2}{13}\left(-2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{3}{5},y=-1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-10x-3y=9,-5x+5y=-2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-5\left(-10\right)x-5\left(-3\right)y=-5\times 9,-10\left(-5\right)x-10\times 5y=-10\left(-2\right)
-10x र -5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -10 ले गुणन गर्नुहोस्।
50x+15y=-45,50x-50y=20
सरल गर्नुहोस्।
50x-50x+15y+50y=-45-20
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 50x+15y=-45 बाट 50x-50y=20 घटाउनुहोस्।
15y+50y=-45-20
-50x मा 50x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 50x र -50x राशी रद्द हुन्छन्।
65y=-45-20
50y मा 15y जोड्नुहोस्
65y=-65
-20 मा -45 जोड्नुहोस्
y=-1
दुबैतिर 65 ले भाग गर्नुहोस्।
-5x+5\left(-1\right)=-2
-5x+5y=-2 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-5x-5=-2
5 लाई -1 पटक गुणन गर्नुहोस्।
-5x=3
समीकरणको दुबैतिर 5 जोड्नुहोस्।
x=-\frac{3}{5}
दुबैतिर -5 ले भाग गर्नुहोस्।
x=-\frac{3}{5},y=-1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}