\left\{ \begin{array} { l } { \frac { 2 } { 3 } x + \frac { 3 } { 4 } y = \frac { 17 } { 12 } } \\ { \frac { 1 } { 6 } x - \frac { 1 } { 2 } y = - \frac { 1 } { 3 } } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=1
y=1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12}
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
\frac{2}{3}x=-\frac{3}{4}y+\frac{17}{12}
समीकरणको दुबैतिरबाट \frac{3y}{4} घटाउनुहोस्।
x=\frac{3}{2}\left(-\frac{3}{4}y+\frac{17}{12}\right)
समीकरणको दुबैतिर \frac{2}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{9}{8}y+\frac{17}{8}
\frac{3}{2} लाई -\frac{3y}{4}+\frac{17}{12} पटक गुणन गर्नुहोस्।
\frac{1}{6}\left(-\frac{9}{8}y+\frac{17}{8}\right)-\frac{1}{2}y=-\frac{1}{3}
\frac{-9y+17}{8} लाई x ले अर्को समीकरण \frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3} मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{16}y+\frac{17}{48}-\frac{1}{2}y=-\frac{1}{3}
\frac{1}{6} लाई \frac{-9y+17}{8} पटक गुणन गर्नुहोस्।
-\frac{11}{16}y+\frac{17}{48}=-\frac{1}{3}
-\frac{y}{2} मा -\frac{3y}{16} जोड्नुहोस्
-\frac{11}{16}y=-\frac{11}{16}
समीकरणको दुबैतिरबाट \frac{17}{48} घटाउनुहोस्।
y=1
समीकरणको दुबैतिर -\frac{11}{16} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{-9+17}{8}
x=-\frac{9}{8}y+\frac{17}{8} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{17}{8} लाई -\frac{9}{8} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{3}{4}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}&-\frac{\frac{3}{4}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}\\-\frac{\frac{1}{6}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}&\frac{\frac{2}{3}}{\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{3}{4}\times \frac{1}{6}}\end{matrix}\right)\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}&\frac{18}{11}\\\frac{4}{11}&-\frac{16}{11}\end{matrix}\right)\left(\begin{matrix}\frac{17}{12}\\-\frac{1}{3}\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}\times \frac{17}{12}+\frac{18}{11}\left(-\frac{1}{3}\right)\\\frac{4}{11}\times \frac{17}{12}-\frac{16}{11}\left(-\frac{1}{3}\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
\frac{2}{3}x+\frac{3}{4}y=\frac{17}{12},\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3}
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
\frac{1}{6}\times \frac{2}{3}x+\frac{1}{6}\times \frac{3}{4}y=\frac{1}{6}\times \frac{17}{12},\frac{2}{3}\times \frac{1}{6}x+\frac{2}{3}\left(-\frac{1}{2}\right)y=\frac{2}{3}\left(-\frac{1}{3}\right)
\frac{2x}{3} र \frac{x}{6} लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई \frac{1}{6} ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई \frac{2}{3} ले गुणन गर्नुहोस्।
\frac{1}{9}x+\frac{1}{8}y=\frac{17}{72},\frac{1}{9}x-\frac{1}{3}y=-\frac{2}{9}
सरल गर्नुहोस्।
\frac{1}{9}x-\frac{1}{9}x+\frac{1}{8}y+\frac{1}{3}y=\frac{17}{72}+\frac{2}{9}
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर \frac{1}{9}x+\frac{1}{8}y=\frac{17}{72} बाट \frac{1}{9}x-\frac{1}{3}y=-\frac{2}{9} घटाउनुहोस्।
\frac{1}{8}y+\frac{1}{3}y=\frac{17}{72}+\frac{2}{9}
-\frac{x}{9} मा \frac{x}{9} जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै \frac{x}{9} र -\frac{x}{9} राशी रद्द हुन्छन्।
\frac{11}{24}y=\frac{17}{72}+\frac{2}{9}
\frac{y}{3} मा \frac{y}{8} जोड्नुहोस्
\frac{11}{24}y=\frac{11}{24}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{17}{72} लाई \frac{2}{9} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
y=1
समीकरणको दुबैतिर \frac{11}{24} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
\frac{1}{6}x-\frac{1}{2}=-\frac{1}{3}
\frac{1}{6}x-\frac{1}{2}y=-\frac{1}{3} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
\frac{1}{6}x=\frac{1}{6}
समीकरणको दुबैतिर \frac{1}{2} जोड्नुहोस्।
x=1
दुबैतिर 6 ले गुणन गर्नुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}