मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
x^{2}-4x+4 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2 प्राप्त गर्नको लागि 4 बाट 2 घटाउनुहोस्।
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2-x^{2}+4x वर्ग गर्नुहोस्।
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
0 प्राप्त गर्नको लागि 0 र 5 गुणा गर्नुहोस्।
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
2 प्राप्त गर्नको लागि 0 बाट 2 घटाउनुहोस्।
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
2 को पावरमा 2 हिसाब गरी 4 प्राप्त गर्नुहोस्।
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
0 प्राप्त गर्नको लागि 4 बाट 4 घटाउनुहोस्।
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{4}\mathrm{d}x लाई \frac{x^{5}}{5} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{3}\mathrm{d}x लाई \frac{x^{4}}{4} ले प्रतिस्थापन गर्नुहोस्। -8 लाई \frac{x^{4}}{4} पटक गुणन गर्नुहोस्।
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। 20 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्। -16 लाई \frac{x^{2}}{2} पटक गुणन गर्नुहोस्।
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{10970799276608}{15}
सरल गर्नुहोस्।