मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int _{0}^{4}-25x+36x^{2}\mathrm{d}x
-25+36x लाई x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\int -25x+36x^{2}\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int -25x\mathrm{d}x+\int 36x^{2}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
-25\int x\mathrm{d}x+36\int x^{2}\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
-\frac{25x^{2}}{2}+36\int x^{2}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्। -25 लाई \frac{x^{2}}{2} पटक गुणन गर्नुहोस्।
-\frac{25x^{2}}{2}+12x^{3}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। 36 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
-\frac{25}{2}\times 4^{2}+12\times 4^{3}-\left(-\frac{25}{2}\times 0^{2}+12\times 0^{3}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
568
सरल गर्नुहोस्।