मूल्याङ्कन गर्नुहोस्
112
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\int _{0}^{2}\left(24+24x+0x^{2}\right)x\mathrm{d}x
0 प्राप्त गर्नको लागि 0 र 6 गुणा गर्नुहोस्।
\int _{0}^{2}\left(24+24x+0\right)x\mathrm{d}x
शून्यलाई कुनै पनि अंकले गुणन गर्दा शून्य नै हुन्छ।
\int _{0}^{2}\left(24+24x\right)x\mathrm{d}x
24 प्राप्त गर्नको लागि 24 र 0 जोड्नुहोस्।
\int _{0}^{2}24x+24x^{2}\mathrm{d}x
24+24x लाई x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\int 24x+24x^{2}\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int 24x\mathrm{d}x+\int 24x^{2}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
24\int x\mathrm{d}x+24\int x^{2}\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
12x^{2}+24\int x^{2}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्। 24 लाई \frac{x^{2}}{2} पटक गुणन गर्नुहोस्।
12x^{2}+8x^{3}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। 24 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
12\times 2^{2}+8\times 2^{3}-\left(12\times 0^{2}+8\times 0^{3}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
112
सरल गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}