मूल्याङ्कन गर्नुहोस्
r\left(\sqrt{\alpha ^{2}-r}-r\right)
r\leq \alpha ^{2}
भिन्नता w.r.t. r
\frac{\alpha ^{2}}{\sqrt{\alpha ^{2}-r}}-2r-\frac{3r}{2\sqrt{\alpha ^{2}-r}}
प्रश्नोत्तरी
Integration
5 समस्याहरू यस प्रकार छन्:
\int _ { r } ^ { \sqrt { \alpha ^ { 2 } - r } } r d z
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\int r\mathrm{d}z
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
rz
साधारण अनुकूलन नियम \int a\mathrm{d}z=az को तालिका प्रयोग गरेर r को अनुकूलन पत्ता लगाउनुहोस्।
r\left(\alpha ^{2}-r\right)^{\frac{1}{2}}-rr
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
r\left(\sqrt{\alpha ^{2}-r}-r\right)
सरल गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}