मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
\left(x^{3}+5\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 6 प्राप्त गर्न 3 र 2 गुणन गर्नुहोस्।
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
x^{6}+10x^{3}+25 लाई 3 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
3x^{6}+30x^{3}+75 लाई x^{2} ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{8}\mathrm{d}x लाई \frac{x^{9}}{9} ले प्रतिस्थापन गर्नुहोस्। 3 लाई \frac{x^{9}}{9} पटक गुणन गर्नुहोस्।
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{5}\mathrm{d}x लाई \frac{x^{6}}{6} ले प्रतिस्थापन गर्नुहोस्। 30 लाई \frac{x^{6}}{6} पटक गुणन गर्नुहोस्।
\frac{x^{9}}{3}+5x^{6}+25x^{3}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। 75 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{1981}{3}
सरल गर्नुहोस्।