मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int x^{2}+\sin(x)\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int x^{2}\mathrm{d}x+\int \sin(x)\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\frac{x^{3}}{3}+\int \sin(x)\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{3}}{3}-\cos(x)
नतिजा प्राप्त गर्न साधारण अनुकूलनको तालिकाबाट \int \sin(x)\mathrm{d}x=-\cos(x) को प्रयोग गर्नुहोस्।
\frac{8^{3}}{3}-\cos(8)-\left(\frac{0^{3}}{3}-\cos(0)\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{1}{3}\left(-3\cos(8)+515\right)
सरल गर्नुहोस्।