मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int x^{2}+e^{x}\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int x^{2}\mathrm{d}x+\int e^{x}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\frac{x^{3}}{3}+\int e^{x}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{3}}{3}+e^{x}
नतिजा प्राप्त गर्न साधारण अनुकूलनको तालिकाबाट \int e^{x}\mathrm{d}x=e^{x} को प्रयोग गर्नुहोस्।
\frac{5^{3}}{3}+e^{5}-\left(\frac{0^{3}}{3}+e^{0}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{122}{3}+e^{5}
सरल गर्नुहोस्।