मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int x^{3}-6x^{2}+5x\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int 5x\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
\frac{x^{4}}{4}-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{3}\mathrm{d}x लाई \frac{x^{4}}{4} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{4}}{4}-2x^{3}+5\int x\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। -6 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
\frac{x^{4}}{4}-2x^{3}+\frac{5x^{2}}{2}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्। 5 लाई \frac{x^{2}}{2} पटक गुणन गर्नुहोस्।
\frac{1^{4}}{4}-2\times 1^{3}+\frac{5}{2}\times 1^{2}-\left(\frac{0^{4}}{4}-2\times 0^{3}+\frac{5}{2}\times 0^{2}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{3}{4}
सरल गर्नुहोस्।