मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int _{-0.15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
-1+\frac{1}{2}x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
\int _{-0.15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
\frac{3}{2}x प्राप्त गर्नको लागि 2x र -\frac{1}{2}x लाई संयोजन गर्नुहोस्।
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। -1 लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्। \frac{3}{2} लाई \frac{x^{2}}{2} पटक गुणन गर्नुहोस्।
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
साधारण अनुकूलन नियम \int a\mathrm{d}x=ax को तालिका प्रयोग गरेर 1 को अनुकूलन पत्ता लगाउनुहोस्।
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{\left(-0.15\right)^{3}}{3}+\frac{3}{4}\left(-0.15\right)^{2}-0.15\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
-\frac{146541311677}{1500}
सरल गर्नुहोस्।