मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int x^{4}-\frac{x^{2}}{2}\mathrm{d}x
अपरिभाषित अनुकूलन पहिले मूल्याङ्कन गर्नुहोस्।
\int x^{4}\mathrm{d}x+\int -\frac{x^{2}}{2}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\int x^{4}\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
प्रत्येक पदको अचलको खण्डीकरण गर्नुहोस्।
\frac{x^{5}}{5}-\frac{\int x^{2}\mathrm{d}x}{2}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{4}\mathrm{d}x लाई \frac{x^{5}}{5} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{5}}{5}-\frac{x^{3}}{6}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{2}\mathrm{d}x लाई \frac{x^{3}}{3} ले प्रतिस्थापन गर्नुहोस्। -\frac{1}{2} लाई \frac{x^{3}}{3} पटक गुणन गर्नुहोस्।
\frac{1^{5}}{5}-\frac{1^{3}}{6}-\left(\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}\right)
परिभाषित अनुकूलन भनेको अनुकूलनको माथिल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ माइनस अनुकूलनको तल्लो सीमामा मूल्याङ्कन गरिएको एन्टिडेरिभेटिभ हो।
\frac{1}{30}+\frac{\sqrt{2}}{60}
सरल गर्नुहोस्।