मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. x
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
पदैपिच्छे जोड अनुकूलन गर्नुहोस्।
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x\mathrm{d}x लाई \frac{x^{2}}{2} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
\sqrt[3]{x} लाई x^{\frac{1}{3}} को रूपमा पुन: लेख्नुहोस्। k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int x^{\frac{1}{3}}\mathrm{d}x लाई \frac{x^{\frac{4}{3}}}{\frac{4}{3}} ले प्रतिस्थापन गर्नुहोस्। सरल गर्नुहोस्।
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
k\neq -1 को लागि \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} भएकोले, \int \frac{1}{x^{2}}\mathrm{d}x लाई -\frac{1}{x} ले प्रतिस्थापन गर्नुहोस्।
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
यदि f\left(x\right) को एन्टिडेरिभेटिभ F\left(x\right) भए, f\left(x\right) का सबै एन्टिडेरिभेटिभ्सको समूह F\left(x\right)+C द्वारा दिइएको छ। त्यसकारण, नतिजामा अनुकूलन C\in \mathrm{R} को अचल जोड्नुहोस्।