x को लागि हल गर्नुहोस् (complex solution)
x\in \mathrm{C}
x को लागि हल गर्नुहोस्
x\in \mathrm{R}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} प्राप्त गर्नको लागि x+1 र x+1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} प्राप्त गर्नको लागि x-1 र x-1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} प्राप्त गर्नको लागि x^{2}+1 र x^{2}+1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} लाई x^{2}+2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} लाई x^{2}-2x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} प्राप्त गर्नको लागि -\frac{1}{2}x^{2} र x^{2} लाई संयोजन गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} लाई x^{4}+2x^{2}+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
दुवै छेउबाट \frac{1}{4}x^{4} घटाउनुहोस्।
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 प्राप्त गर्नको लागि \frac{1}{4}x^{4} र -\frac{1}{4}x^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
दुवै छेउबाट \frac{1}{2}x^{2} घटाउनुहोस्।
\frac{1}{4}=\frac{1}{4}
0 प्राप्त गर्नको लागि \frac{1}{2}x^{2} र -\frac{1}{2}x^{2} लाई संयोजन गर्नुहोस्।
\text{true}
\frac{1}{4} र \frac{1}{4} लाई तुलना गर्नुहोस्।
x\in \mathrm{C}
कुनै पनि x को लागि यो सत्य हो।
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x+1\right)^{2} प्राप्त गर्नको लागि x+1 र x+1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
\left(x-1\right)^{2} प्राप्त गर्नको लागि x-1 र x-1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x^{2}+1\right)^{2} प्राप्त गर्नको लागि x^{2}+1 र x^{2}+1 गुणा गर्नुहोस्।
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} लाई x^{2}+2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} लाई x^{2}-2x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{2}x^{2} प्राप्त गर्नको लागि -\frac{1}{2}x^{2} र x^{2} लाई संयोजन गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} लाई x^{4}+2x^{2}+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
दुवै छेउबाट \frac{1}{4}x^{4} घटाउनुहोस्।
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
0 प्राप्त गर्नको लागि \frac{1}{4}x^{4} र -\frac{1}{4}x^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
दुवै छेउबाट \frac{1}{2}x^{2} घटाउनुहोस्।
\frac{1}{4}=\frac{1}{4}
0 प्राप्त गर्नको लागि \frac{1}{2}x^{2} र -\frac{1}{2}x^{2} लाई संयोजन गर्नुहोस्।
\text{true}
\frac{1}{4} र \frac{1}{4} लाई तुलना गर्नुहोस्।
x\in \mathrm{R}
कुनै पनि x को लागि यो सत्य हो।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}