y को लागि हल गर्नुहोस्
y=1
y=0
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y^{2}-y=0
शून्यले गरिने भाग परिभाषित नभएकाले चर y -3 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर y+3 ले गुणन गर्नुहोस्।
y\left(y-1\right)=0
y को गुणन खण्ड निकाल्नुहोस्।
y=0 y=1
समीकरणको समाधान पत्ता लगाउन, y=0 र y-1=0 को समाधान गर्नुहोस्।
y^{2}-y=0
शून्यले गरिने भाग परिभाषित नभएकाले चर y -3 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर y+3 ले गुणन गर्नुहोस्।
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई -1 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
y=\frac{-\left(-1\right)±1}{2}
1 को वर्गमूल निकाल्नुहोस्।
y=\frac{1±1}{2}
-1 विपरीत 1हो।
y=\frac{2}{2}
अब ± प्लस मानेर y=\frac{1±1}{2} समीकरणलाई हल गर्नुहोस्। 1 मा 1 जोड्नुहोस्
y=1
2 लाई 2 ले भाग गर्नुहोस्।
y=\frac{0}{2}
अब ± माइनस मानेर y=\frac{1±1}{2} समीकरणलाई हल गर्नुहोस्। 1 बाट 1 घटाउनुहोस्।
y=0
0 लाई 2 ले भाग गर्नुहोस्।
y=1 y=0
अब समिकरण समाधान भएको छ।
y^{2}-y=0
शून्यले गरिने भाग परिभाषित नभएकाले चर y -3 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर y+3 ले गुणन गर्नुहोस्।
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
2 द्वारा -\frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -1 ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
y^{2}-y+\frac{1}{4}=\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{2} लाई वर्ग गर्नुहोस्।
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
कारक y^{2}-y+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
सरल गर्नुहोस्।
y=1 y=0
समीकरणको दुबैतिर \frac{1}{2} जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}