x को लागि हल गर्नुहोस्
x=9
x=0
ग्राफ
प्रश्नोत्तरी
Polynomial
\frac{ { x }^{ 2 } }{ 9 } -x=0
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x^{2}-9x=0
समीकरणको दुबैतिर 9 ले गुणन गर्नुहोस्।
x\left(x-9\right)=0
x को गुणन खण्ड निकाल्नुहोस्।
x=0 x=9
समीकरणको समाधान पत्ता लगाउन, x=0 र x-9=0 को समाधान गर्नुहोस्।
\frac{1}{9}x^{2}-x=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{1}{9}}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई \frac{1}{9} ले, b लाई -1 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±1}{2\times \frac{1}{9}}
1 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±1}{2\times \frac{1}{9}}
-1 विपरीत 1हो।
x=\frac{1±1}{\frac{2}{9}}
2 लाई \frac{1}{9} पटक गुणन गर्नुहोस्।
x=\frac{2}{\frac{2}{9}}
अब ± प्लस मानेर x=\frac{1±1}{\frac{2}{9}} समीकरणलाई हल गर्नुहोस्। 1 मा 1 जोड्नुहोस्
x=9
\frac{2}{9} को उल्टोले 2 लाई गुणन गरी 2 लाई \frac{2}{9} ले भाग गर्नुहोस्।
x=\frac{0}{\frac{2}{9}}
अब ± माइनस मानेर x=\frac{1±1}{\frac{2}{9}} समीकरणलाई हल गर्नुहोस्। 1 बाट 1 घटाउनुहोस्।
x=0
\frac{2}{9} को उल्टोले 0 लाई गुणन गरी 0 लाई \frac{2}{9} ले भाग गर्नुहोस्।
x=9 x=0
अब समिकरण समाधान भएको छ।
x^{2}-9x=0
समीकरणको दुबैतिर 9 ले गुणन गर्नुहोस्।
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
2 द्वारा -\frac{9}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -9 ले भाग गर्नुहोस्। त्यसपछि -\frac{9}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-9x+\frac{81}{4}=\frac{81}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{9}{2} लाई वर्ग गर्नुहोस्।
\left(x-\frac{9}{2}\right)^{2}=\frac{81}{4}
कारक x^{2}-9x+\frac{81}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{9}{2}=\frac{9}{2} x-\frac{9}{2}=-\frac{9}{2}
सरल गर्नुहोस्।
x=9 x=0
समीकरणको दुबैतिर \frac{9}{2} जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}