x को लागि हल गर्नुहोस्
x=-3
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
शून्यले गरिने भाग परिभाषित नभएकाले चर x 1,2 मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ x-1,x-2,x^{2}-3x+2 को लघुत्तम समापवर्त्यक \left(x-2\right)\left(x-1\right) ले गुणन गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
\left(x-2\right)^{2} प्राप्त गर्नको लागि x-2 र x-2 गुणा गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
\left(x-1\right)^{2} प्राप्त गर्नको लागि x-1 र x-1 गुणा गर्नुहोस्।
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
\left(x-2\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
\left(x-1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-x^{2}+2x-1=x^{2}
x^{2}-2x+1 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
-4x+4+2x-1=x^{2}
0 प्राप्त गर्नको लागि x^{2} र -x^{2} लाई संयोजन गर्नुहोस्।
-2x+4-1=x^{2}
-2x प्राप्त गर्नको लागि -4x र 2x लाई संयोजन गर्नुहोस्।
-2x+3=x^{2}
3 प्राप्त गर्नको लागि 1 बाट 4 घटाउनुहोस्।
-2x+3-x^{2}=0
दुवै छेउबाट x^{2} घटाउनुहोस्।
-x^{2}-2x+3=0
पोलिनोमियललाई मानक रूपमा राख्न यसको पुन: क्रम गर्नुहोस्। पदहरूलाई सबैभन्दा ठूलोबाट सबैभन्दा सानो पावरको क्रममा राख्नुहोस्।
a+b=-2 ab=-3=-3
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई -x^{2}+ax+bx+3 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=1 b=-3
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(-x^{2}+x\right)+\left(-3x+3\right)
-x^{2}-2x+3 लाई \left(-x^{2}+x\right)+\left(-3x+3\right) को रूपमा पुन: लेख्नुहोस्।
x\left(-x+1\right)+3\left(-x+1\right)
x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(-x+1\right)\left(x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म -x+1 खण्डिकरण गर्नुहोस्।
x=1 x=-3
समीकरणको समाधान पत्ता लगाउन, -x+1=0 र x+3=0 को समाधान गर्नुहोस्।
x=-3
चर x 1 सँग बराबर हुन सक्दैन।
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
शून्यले गरिने भाग परिभाषित नभएकाले चर x 1,2 मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ x-1,x-2,x^{2}-3x+2 को लघुत्तम समापवर्त्यक \left(x-2\right)\left(x-1\right) ले गुणन गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
\left(x-2\right)^{2} प्राप्त गर्नको लागि x-2 र x-2 गुणा गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
\left(x-1\right)^{2} प्राप्त गर्नको लागि x-1 र x-1 गुणा गर्नुहोस्।
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
\left(x-2\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
\left(x-1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-x^{2}+2x-1=x^{2}
x^{2}-2x+1 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
-4x+4+2x-1=x^{2}
0 प्राप्त गर्नको लागि x^{2} र -x^{2} लाई संयोजन गर्नुहोस्।
-2x+4-1=x^{2}
-2x प्राप्त गर्नको लागि -4x र 2x लाई संयोजन गर्नुहोस्।
-2x+3=x^{2}
3 प्राप्त गर्नको लागि 1 बाट 4 घटाउनुहोस्।
-2x+3-x^{2}=0
दुवै छेउबाट x^{2} घटाउनुहोस्।
-x^{2}-2x+3=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई -1 ले, b लाई -2 ले र c लाई 3 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
-2 वर्ग गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
12 मा 4 जोड्नुहोस्
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
16 को वर्गमूल निकाल्नुहोस्।
x=\frac{2±4}{2\left(-1\right)}
-2 विपरीत 2हो।
x=\frac{2±4}{-2}
2 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{6}{-2}
अब ± प्लस मानेर x=\frac{2±4}{-2} समीकरणलाई हल गर्नुहोस्। 4 मा 2 जोड्नुहोस्
x=-3
6 लाई -2 ले भाग गर्नुहोस्।
x=-\frac{2}{-2}
अब ± माइनस मानेर x=\frac{2±4}{-2} समीकरणलाई हल गर्नुहोस्। 2 बाट 4 घटाउनुहोस्।
x=1
-2 लाई -2 ले भाग गर्नुहोस्।
x=-3 x=1
अब समिकरण समाधान भएको छ।
x=-3
चर x 1 सँग बराबर हुन सक्दैन।
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
शून्यले गरिने भाग परिभाषित नभएकाले चर x 1,2 मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ x-1,x-2,x^{2}-3x+2 को लघुत्तम समापवर्त्यक \left(x-2\right)\left(x-1\right) ले गुणन गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
\left(x-2\right)^{2} प्राप्त गर्नको लागि x-2 र x-2 गुणा गर्नुहोस्।
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
\left(x-1\right)^{2} प्राप्त गर्नको लागि x-1 र x-1 गुणा गर्नुहोस्।
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
\left(x-2\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
\left(x-1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a-b\right)^{2}=a^{2}-2ab+b^{2} प्रयोग गर्नुहोस्।
x^{2}-4x+4-x^{2}+2x-1=x^{2}
x^{2}-2x+1 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
-4x+4+2x-1=x^{2}
0 प्राप्त गर्नको लागि x^{2} र -x^{2} लाई संयोजन गर्नुहोस्।
-2x+4-1=x^{2}
-2x प्राप्त गर्नको लागि -4x र 2x लाई संयोजन गर्नुहोस्।
-2x+3=x^{2}
3 प्राप्त गर्नको लागि 1 बाट 4 घटाउनुहोस्।
-2x+3-x^{2}=0
दुवै छेउबाट x^{2} घटाउनुहोस्।
-2x-x^{2}=-3
दुवै छेउबाट 3 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
-x^{2}-2x=-3
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
दुबैतिर -1 ले भाग गर्नुहोस्।
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
-1 द्वारा भाग गर्नाले -1 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+2x=-\frac{3}{-1}
-2 लाई -1 ले भाग गर्नुहोस्।
x^{2}+2x=3
-3 लाई -1 ले भाग गर्नुहोस्।
x^{2}+2x+1^{2}=3+1^{2}
2 द्वारा 1 प्राप्त गर्न x पदको गुणाङ्कलाई 2 ले भाग गर्नुहोस्। त्यसपछि 1 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+2x+1=3+1
1 वर्ग गर्नुहोस्।
x^{2}+2x+1=4
1 मा 3 जोड्नुहोस्
\left(x+1\right)^{2}=4
कारक x^{2}+2x+1। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+1=2 x+1=-2
सरल गर्नुहोस्।
x=1 x=-3
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
x=-3
चर x 1 सँग बराबर हुन सक्दैन।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}