मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. x
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
\frac{1}{\sqrt{x+3}} लाई घाताङ्कमा लैजान, अंश र हर दुबैलाई घाताङ्कमा लैजानुहोस् र त्यसपछि भाग गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
2 को पावरमा 1 हिसाब गरी 1 प्राप्त गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
2 को पावरमा \sqrt{x+3} हिसाब गरी x+3 प्राप्त गर्नुहोस्।
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
दुई भिन्न फलनहरू f\left(u\right) र u=g\left(x\right) को संयोजन F हो भने, F\left(x\right)=f\left(g\left(x\right)\right) हुन्छ, त्यसपछि u पटक सँग सम्बन्धित F को डेरिभेटिभ f को डेरिभेटिभ हो, x सँग सम्बन्धित g को डेरिभेटिभ हो जुन \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) हुन्छ।
-\left(x^{1}+3\right)^{-2}x^{1-1}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
-x^{0}\left(x^{1}+3\right)^{-2}
सरल गर्नुहोस्।
-x^{0}\left(x+3\right)^{-2}
कुनैपनि पदका लागि t, t^{1}=t।
-\left(x+3\right)^{-2}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।