मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. a
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। a-1 र a+1 को लघुत्तम समापवर्तक \left(a-1\right)\left(a+1\right) हो। \frac{a^{5}}{a-1} लाई \frac{a+1}{a+1} पटक गुणन गर्नुहोस्। \frac{a^{2}}{a+1} लाई \frac{a-1}{a-1} पटक गुणन गर्नुहोस्।
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
a^{5}\left(a+1\right)-a^{2}\left(a-1\right) लाई गुणन गर्नुहोस्।
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(a-1\right)\left(a+1\right) र a-1 को लघुत्तम समापवर्तक \left(a-1\right)\left(a+1\right) हो। \frac{1}{a-1} लाई \frac{a+1}{a+1} पटक गुणन गर्नुहोस्।
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right) लाई गुणन गर्नुहोस्।
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)} मा पहिले नै गुणन खण्ड ननिकालिएका अभिव्यञ्जकहरूको गुणन खण्ड निकाल्नुहोस्।
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
a-1 लाई अंश र हर दुबैमा रद्द गर्नुहोस्।
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} र \frac{1}{a+1} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1} मा पहिले नै गुणन खण्ड ननिकालिएका अभिव्यञ्जकहरूको गुणन खण्ड निकाल्नुहोस्।
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
a+1 लाई अंश र हर दुबैमा रद्द गर्नुहोस्।
a^{4}+a^{3}+a^{2}+2
अभिव्यञ्जक विस्तृत गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। a-1 र a+1 को लघुत्तम समापवर्तक \left(a-1\right)\left(a+1\right) हो। \frac{a^{5}}{a-1} लाई \frac{a+1}{a+1} पटक गुणन गर्नुहोस्। \frac{a^{2}}{a+1} लाई \frac{a-1}{a-1} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
a^{5}\left(a+1\right)-a^{2}\left(a-1\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(a-1\right)\left(a+1\right) र a-1 को लघुत्तम समापवर्तक \left(a-1\right)\left(a+1\right) हो। \frac{1}{a-1} लाई \frac{a+1}{a+1} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)} मा पहिले नै गुणन खण्ड ननिकालिएका अभिव्यञ्जकहरूको गुणन खण्ड निकाल्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
a-1 लाई अंश र हर दुबैमा रद्द गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} र \frac{1}{a+1} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1} मा पहिले नै गुणन खण्ड ननिकालिएका अभिव्यञ्जकहरूको गुणन खण्ड निकाल्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
a+1 लाई अंश र हर दुबैमा रद्द गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
अभिव्यञ्जक विस्तृत गर्नुहोस्।
4a^{4-1}+3a^{3-1}+2a^{2-1}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
4a^{3}+3a^{3-1}+2a^{2-1}
4 बाट 1 घटाउनुहोस्।
4a^{3}+3a^{2}+2a^{2-1}
3 बाट 1 घटाउनुहोस्।
4a^{3}+3a^{2}+2a^{1}
2 बाट 1 घटाउनुहोस्।
4a^{3}+3a^{2}+2a
कुनैपनि पदका लागि t, t^{1}=t।