x को लागि हल गर्नुहोस्
x=-\frac{3}{4}=-0.75
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2\left(2x-1\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
शून्यले गरिने भाग परिभाषित नभएकाले चर x -1,-\frac{1}{2},\frac{1}{2} मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ 4x^{2}+4x+1,4x^{2}-1,2x+2 को लघुत्तम समापवर्त्यक 2\left(2x-1\right)\left(x+1\right)\left(2x+1\right)^{2} ले गुणन गर्नुहोस्।
\left(4x-2\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
2 लाई 2x-1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\left(4x^{2}+2x-2\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x-2 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+2x-2 लाई 6x+4 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-8\left(2x+1\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 प्राप्त गर्नको लागि 2 र 4 गुणा गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x+8\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{2}+24x+8\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x+8 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{3}+24x^{2}+8x\right)=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{2}+24x+8 लाई x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-16x^{3}-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{3}+24x^{2}+8x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+28x^{2}-4x-8-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8x^{3} प्राप्त गर्नको लागि 24x^{3} र -16x^{3} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-4x-8-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2} प्राप्त गर्नको लागि 28x^{2} र -24x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
-12x प्राप्त गर्नको लागि -4x र -8x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(4x^{2}+4x+1\right)\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
\left(2x+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+4x+1 लाई 2x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-4\left(2x+1\right)\left(x+1\right)
4 प्राप्त गर्नको लागि 2 र 2 गुणा गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x+4\right)\left(x+1\right)
4 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x^{2}+12x+4\right)
8x+4 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-8x^{2}-12x-4
8x^{2}+12x+4 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-2x-1-12x-4
-4x^{2} प्राप्त गर्नको लागि 4x^{2} र -8x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-1-4
-14x प्राप्त गर्नको लागि -2x र -12x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-5
-5 प्राप्त गर्नको लागि 4 बाट -1 घटाउनुहोस्।
8x^{3}+4x^{2}-12x-8-8x^{3}=-4x^{2}-14x-5
दुवै छेउबाट 8x^{3} घटाउनुहोस्।
4x^{2}-12x-8=-4x^{2}-14x-5
0 प्राप्त गर्नको लागि 8x^{3} र -8x^{3} लाई संयोजन गर्नुहोस्।
4x^{2}-12x-8+4x^{2}=-14x-5
दुबै छेउहरूमा 4x^{2} थप्नुहोस्।
8x^{2}-12x-8=-14x-5
8x^{2} प्राप्त गर्नको लागि 4x^{2} र 4x^{2} लाई संयोजन गर्नुहोस्।
8x^{2}-12x-8+14x=-5
दुबै छेउहरूमा 14x थप्नुहोस्।
8x^{2}+2x-8=-5
2x प्राप्त गर्नको लागि -12x र 14x लाई संयोजन गर्नुहोस्।
8x^{2}+2x-8+5=0
दुबै छेउहरूमा 5 थप्नुहोस्।
8x^{2}+2x-3=0
-3 प्राप्त गर्नको लागि -8 र 5 जोड्नुहोस्।
a+b=2 ab=8\left(-3\right)=-24
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 8x^{2}+ax+bx-3 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,24 -2,12 -3,8 -4,6
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+24=23 -2+12=10 -3+8=5 -4+6=2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=6
समाधान त्यो जोडी हो जसले जोडफल 2 दिन्छ।
\left(8x^{2}-4x\right)+\left(6x-3\right)
8x^{2}+2x-3 लाई \left(8x^{2}-4x\right)+\left(6x-3\right) को रूपमा पुन: लेख्नुहोस्।
4x\left(2x-1\right)+3\left(2x-1\right)
4x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-1\right)\left(4x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-1 खण्डिकरण गर्नुहोस्।
x=\frac{1}{2} x=-\frac{3}{4}
समीकरणको समाधान पत्ता लगाउन, 2x-1=0 र 4x+3=0 को समाधान गर्नुहोस्।
x=-\frac{3}{4}
चर x \frac{1}{2} सँग बराबर हुन सक्दैन।
2\left(2x-1\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
शून्यले गरिने भाग परिभाषित नभएकाले चर x -1,-\frac{1}{2},\frac{1}{2} मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ 4x^{2}+4x+1,4x^{2}-1,2x+2 को लघुत्तम समापवर्त्यक 2\left(2x-1\right)\left(x+1\right)\left(2x+1\right)^{2} ले गुणन गर्नुहोस्।
\left(4x-2\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
2 लाई 2x-1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\left(4x^{2}+2x-2\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x-2 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+2x-2 लाई 6x+4 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-8\left(2x+1\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 प्राप्त गर्नको लागि 2 र 4 गुणा गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x+8\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{2}+24x+8\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x+8 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{3}+24x^{2}+8x\right)=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{2}+24x+8 लाई x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-16x^{3}-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{3}+24x^{2}+8x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+28x^{2}-4x-8-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8x^{3} प्राप्त गर्नको लागि 24x^{3} र -16x^{3} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-4x-8-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2} प्राप्त गर्नको लागि 28x^{2} र -24x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
-12x प्राप्त गर्नको लागि -4x र -8x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(4x^{2}+4x+1\right)\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
\left(2x+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+4x+1 लाई 2x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-4\left(2x+1\right)\left(x+1\right)
4 प्राप्त गर्नको लागि 2 र 2 गुणा गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x+4\right)\left(x+1\right)
4 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x^{2}+12x+4\right)
8x+4 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-8x^{2}-12x-4
8x^{2}+12x+4 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-2x-1-12x-4
-4x^{2} प्राप्त गर्नको लागि 4x^{2} र -8x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-1-4
-14x प्राप्त गर्नको लागि -2x र -12x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-5
-5 प्राप्त गर्नको लागि 4 बाट -1 घटाउनुहोस्।
8x^{3}+4x^{2}-12x-8-8x^{3}=-4x^{2}-14x-5
दुवै छेउबाट 8x^{3} घटाउनुहोस्।
4x^{2}-12x-8=-4x^{2}-14x-5
0 प्राप्त गर्नको लागि 8x^{3} र -8x^{3} लाई संयोजन गर्नुहोस्।
4x^{2}-12x-8+4x^{2}=-14x-5
दुबै छेउहरूमा 4x^{2} थप्नुहोस्।
8x^{2}-12x-8=-14x-5
8x^{2} प्राप्त गर्नको लागि 4x^{2} र 4x^{2} लाई संयोजन गर्नुहोस्।
8x^{2}-12x-8+14x=-5
दुबै छेउहरूमा 14x थप्नुहोस्।
8x^{2}+2x-8=-5
2x प्राप्त गर्नको लागि -12x र 14x लाई संयोजन गर्नुहोस्।
8x^{2}+2x-8+5=0
दुबै छेउहरूमा 5 थप्नुहोस्।
8x^{2}+2x-3=0
-3 प्राप्त गर्नको लागि -8 र 5 जोड्नुहोस्।
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-3\right)}}{2\times 8}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 8 ले, b लाई 2 ले र c लाई -3 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-2±\sqrt{4-4\times 8\left(-3\right)}}{2\times 8}
2 वर्ग गर्नुहोस्।
x=\frac{-2±\sqrt{4-32\left(-3\right)}}{2\times 8}
-4 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{-2±\sqrt{4+96}}{2\times 8}
-32 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-2±\sqrt{100}}{2\times 8}
96 मा 4 जोड्नुहोस्
x=\frac{-2±10}{2\times 8}
100 को वर्गमूल निकाल्नुहोस्।
x=\frac{-2±10}{16}
2 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{8}{16}
अब ± प्लस मानेर x=\frac{-2±10}{16} समीकरणलाई हल गर्नुहोस्। 10 मा -2 जोड्नुहोस्
x=\frac{1}{2}
8 लाई झिकेर र रद्द गरेर, भिनन \frac{8}{16} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{12}{16}
अब ± माइनस मानेर x=\frac{-2±10}{16} समीकरणलाई हल गर्नुहोस्। -2 बाट 10 घटाउनुहोस्।
x=-\frac{3}{4}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{-12}{16} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{1}{2} x=-\frac{3}{4}
अब समिकरण समाधान भएको छ।
x=-\frac{3}{4}
चर x \frac{1}{2} सँग बराबर हुन सक्दैन।
2\left(2x-1\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
शून्यले गरिने भाग परिभाषित नभएकाले चर x -1,-\frac{1}{2},\frac{1}{2} मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ 4x^{2}+4x+1,4x^{2}-1,2x+2 को लघुत्तम समापवर्त्यक 2\left(2x-1\right)\left(x+1\right)\left(2x+1\right)^{2} ले गुणन गर्नुहोस्।
\left(4x-2\right)\left(x+1\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
2 लाई 2x-1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
\left(4x^{2}+2x-2\right)\left(6x+4\right)-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x-2 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-2\left(2x+1\right)\left(x+1\right)\times 4x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+2x-2 लाई 6x+4 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-8\left(2x+1\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 प्राप्त गर्नको लागि 2 र 4 गुणा गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x+8\right)\left(x+1\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{2}+24x+8\right)x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x+8 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-\left(16x^{3}+24x^{2}+8x\right)=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{2}+24x+8 लाई x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
24x^{3}+28x^{2}-4x-8-16x^{3}-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
16x^{3}+24x^{2}+8x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+28x^{2}-4x-8-24x^{2}-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
8x^{3} प्राप्त गर्नको लागि 24x^{3} र -16x^{3} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-4x-8-8x=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2} प्राप्त गर्नको लागि 28x^{2} र -24x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(2x+1\right)^{2}\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
-12x प्राप्त गर्नको लागि -4x र -8x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=\left(4x^{2}+4x+1\right)\left(2x-1\right)-2\left(2x+1\right)\left(x+1\right)\times 2
\left(2x+1\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(a+b\right)^{2}=a^{2}+2ab+b^{2} प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-2\left(2x+1\right)\left(x+1\right)\times 2
4x^{2}+4x+1 लाई 2x-1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-4\left(2x+1\right)\left(x+1\right)
4 प्राप्त गर्नको लागि 2 र 2 गुणा गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x+4\right)\left(x+1\right)
4 लाई 2x+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-\left(8x^{2}+12x+4\right)
8x+4 लाई x+1 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}+4x^{2}-2x-1-8x^{2}-12x-4
8x^{2}+12x+4 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-2x-1-12x-4
-4x^{2} प्राप्त गर्नको लागि 4x^{2} र -8x^{2} लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-1-4
-14x प्राप्त गर्नको लागि -2x र -12x लाई संयोजन गर्नुहोस्।
8x^{3}+4x^{2}-12x-8=8x^{3}-4x^{2}-14x-5
-5 प्राप्त गर्नको लागि 4 बाट -1 घटाउनुहोस्।
8x^{3}+4x^{2}-12x-8-8x^{3}=-4x^{2}-14x-5
दुवै छेउबाट 8x^{3} घटाउनुहोस्।
4x^{2}-12x-8=-4x^{2}-14x-5
0 प्राप्त गर्नको लागि 8x^{3} र -8x^{3} लाई संयोजन गर्नुहोस्।
4x^{2}-12x-8+4x^{2}=-14x-5
दुबै छेउहरूमा 4x^{2} थप्नुहोस्।
8x^{2}-12x-8=-14x-5
8x^{2} प्राप्त गर्नको लागि 4x^{2} र 4x^{2} लाई संयोजन गर्नुहोस्।
8x^{2}-12x-8+14x=-5
दुबै छेउहरूमा 14x थप्नुहोस्।
8x^{2}+2x-8=-5
2x प्राप्त गर्नको लागि -12x र 14x लाई संयोजन गर्नुहोस्।
8x^{2}+2x=-5+8
दुबै छेउहरूमा 8 थप्नुहोस्।
8x^{2}+2x=3
3 प्राप्त गर्नको लागि -5 र 8 जोड्नुहोस्।
\frac{8x^{2}+2x}{8}=\frac{3}{8}
दुबैतिर 8 ले भाग गर्नुहोस्।
x^{2}+\frac{2}{8}x=\frac{3}{8}
8 द्वारा भाग गर्नाले 8 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+\frac{1}{4}x=\frac{3}{8}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{2}{8} लाई तल्लो टर्ममा घटाउनुहोस्।
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{3}{8}+\left(\frac{1}{8}\right)^{2}
2 द्वारा \frac{1}{8} प्राप्त गर्न x पदको गुणाङ्कलाई \frac{1}{4} ले भाग गर्नुहोस्। त्यसपछि \frac{1}{8} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{3}{8}+\frac{1}{64}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{1}{8} लाई वर्ग गर्नुहोस्।
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{25}{64}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{8} लाई \frac{1}{64} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x+\frac{1}{8}\right)^{2}=\frac{25}{64}
कारक x^{2}+\frac{1}{4}x+\frac{1}{64}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{1}{8}=\frac{5}{8} x+\frac{1}{8}=-\frac{5}{8}
सरल गर्नुहोस्।
x=\frac{1}{2} x=-\frac{3}{4}
समीकरणको दुबैतिरबाट \frac{1}{8} घटाउनुहोस्।
x=-\frac{3}{4}
चर x \frac{1}{2} सँग बराबर हुन सक्दैन।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}