p को लागि हल गर्नुहोस्
p=-\frac{4}{5}=-0.8
p=1
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
5p^{2}+3p=4\left(p+1\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर p -1 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर p+1 ले गुणन गर्नुहोस्।
5p^{2}+3p=4p+4
4 लाई p+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
5p^{2}+3p-4p=4
दुवै छेउबाट 4p घटाउनुहोस्।
5p^{2}-p=4
-p प्राप्त गर्नको लागि 3p र -4p लाई संयोजन गर्नुहोस्।
5p^{2}-p-4=0
दुवै छेउबाट 4 घटाउनुहोस्।
a+b=-1 ab=5\left(-4\right)=-20
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 5p^{2}+ap+bp-4 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-20 2,-10 4,-5
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-20=-19 2-10=-8 4-5=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-5 b=4
समाधान त्यो जोडी हो जसले जोडफल -1 दिन्छ।
\left(5p^{2}-5p\right)+\left(4p-4\right)
5p^{2}-p-4 लाई \left(5p^{2}-5p\right)+\left(4p-4\right) को रूपमा पुन: लेख्नुहोस्।
5p\left(p-1\right)+4\left(p-1\right)
5p लाई पहिलो र 4 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(p-1\right)\left(5p+4\right)
वितरक गुण प्रयोग गरेर समान टर्म p-1 खण्डिकरण गर्नुहोस्।
p=1 p=-\frac{4}{5}
समीकरणको समाधान पत्ता लगाउन, p-1=0 र 5p+4=0 को समाधान गर्नुहोस्।
5p^{2}+3p=4\left(p+1\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर p -1 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर p+1 ले गुणन गर्नुहोस्।
5p^{2}+3p=4p+4
4 लाई p+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
5p^{2}+3p-4p=4
दुवै छेउबाट 4p घटाउनुहोस्।
5p^{2}-p=4
-p प्राप्त गर्नको लागि 3p र -4p लाई संयोजन गर्नुहोस्।
5p^{2}-p-4=0
दुवै छेउबाट 4 घटाउनुहोस्।
p=\frac{-\left(-1\right)±\sqrt{1-4\times 5\left(-4\right)}}{2\times 5}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 5 ले, b लाई -1 ले र c लाई -4 ले प्रतिस्थापन गर्नुहोस्।
p=\frac{-\left(-1\right)±\sqrt{1-20\left(-4\right)}}{2\times 5}
-4 लाई 5 पटक गुणन गर्नुहोस्।
p=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 5}
-20 लाई -4 पटक गुणन गर्नुहोस्।
p=\frac{-\left(-1\right)±\sqrt{81}}{2\times 5}
80 मा 1 जोड्नुहोस्
p=\frac{-\left(-1\right)±9}{2\times 5}
81 को वर्गमूल निकाल्नुहोस्।
p=\frac{1±9}{2\times 5}
-1 विपरीत 1हो।
p=\frac{1±9}{10}
2 लाई 5 पटक गुणन गर्नुहोस्।
p=\frac{10}{10}
अब ± प्लस मानेर p=\frac{1±9}{10} समीकरणलाई हल गर्नुहोस्। 9 मा 1 जोड्नुहोस्
p=1
10 लाई 10 ले भाग गर्नुहोस्।
p=-\frac{8}{10}
अब ± माइनस मानेर p=\frac{1±9}{10} समीकरणलाई हल गर्नुहोस्। 1 बाट 9 घटाउनुहोस्।
p=-\frac{4}{5}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{-8}{10} लाई तल्लो टर्ममा घटाउनुहोस्।
p=1 p=-\frac{4}{5}
अब समिकरण समाधान भएको छ।
5p^{2}+3p=4\left(p+1\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर p -1 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर p+1 ले गुणन गर्नुहोस्।
5p^{2}+3p=4p+4
4 लाई p+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
5p^{2}+3p-4p=4
दुवै छेउबाट 4p घटाउनुहोस्।
5p^{2}-p=4
-p प्राप्त गर्नको लागि 3p र -4p लाई संयोजन गर्नुहोस्।
\frac{5p^{2}-p}{5}=\frac{4}{5}
दुबैतिर 5 ले भाग गर्नुहोस्।
p^{2}-\frac{1}{5}p=\frac{4}{5}
5 द्वारा भाग गर्नाले 5 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
p^{2}-\frac{1}{5}p+\left(-\frac{1}{10}\right)^{2}=\frac{4}{5}+\left(-\frac{1}{10}\right)^{2}
2 द्वारा -\frac{1}{10} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{1}{5} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{10} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
p^{2}-\frac{1}{5}p+\frac{1}{100}=\frac{4}{5}+\frac{1}{100}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{10} लाई वर्ग गर्नुहोस्।
p^{2}-\frac{1}{5}p+\frac{1}{100}=\frac{81}{100}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{4}{5} लाई \frac{1}{100} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(p-\frac{1}{10}\right)^{2}=\frac{81}{100}
कारक p^{2}-\frac{1}{5}p+\frac{1}{100}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(p-\frac{1}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
p-\frac{1}{10}=\frac{9}{10} p-\frac{1}{10}=-\frac{9}{10}
सरल गर्नुहोस्।
p=1 p=-\frac{4}{5}
समीकरणको दुबैतिर \frac{1}{10} जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}