x को लागि हल गर्नुहोस्
x=-9
x=1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(x-3\right)\times 4-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर x -3,3 मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ x+3,3-x,x-3 को लघुत्तम समापवर्त्यक \left(x-3\right)\left(x+3\right) ले गुणन गर्नुहोस्।
4x-12-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x-3 लाई 4 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
4x-12-\left(-5\left(3+x\right)\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 प्राप्त गर्नको लागि -1 र 5 गुणा गर्नुहोस्।
4x-12-\left(-15-5x\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 लाई 3+x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
4x-12+15+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-15-5x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
4x+3+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
3 प्राप्त गर्नको लागि -12 र 15 जोड्नुहोस्।
9x+3=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
9x प्राप्त गर्नको लागि 4x र 5x लाई संयोजन गर्नुहोस्।
9x+3=x+3+\left(x^{2}-9\right)\left(-1\right)
x-3 लाई x+3 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
9x+3=x+3-x^{2}+9
x^{2}-9 लाई -1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
9x+3=x+12-x^{2}
12 प्राप्त गर्नको लागि 3 र 9 जोड्नुहोस्।
9x+3-x=12-x^{2}
दुवै छेउबाट x घटाउनुहोस्।
8x+3=12-x^{2}
8x प्राप्त गर्नको लागि 9x र -x लाई संयोजन गर्नुहोस्।
8x+3-12=-x^{2}
दुवै छेउबाट 12 घटाउनुहोस्।
8x-9=-x^{2}
-9 प्राप्त गर्नको लागि 12 बाट 3 घटाउनुहोस्।
8x-9+x^{2}=0
दुबै छेउहरूमा x^{2} थप्नुहोस्।
x^{2}+8x-9=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-8±\sqrt{8^{2}-4\left(-9\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 8 ले र c लाई -9 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-8±\sqrt{64-4\left(-9\right)}}{2}
8 वर्ग गर्नुहोस्।
x=\frac{-8±\sqrt{64+36}}{2}
-4 लाई -9 पटक गुणन गर्नुहोस्।
x=\frac{-8±\sqrt{100}}{2}
36 मा 64 जोड्नुहोस्
x=\frac{-8±10}{2}
100 को वर्गमूल निकाल्नुहोस्।
x=\frac{2}{2}
अब ± प्लस मानेर x=\frac{-8±10}{2} समीकरणलाई हल गर्नुहोस्। 10 मा -8 जोड्नुहोस्
x=1
2 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{18}{2}
अब ± माइनस मानेर x=\frac{-8±10}{2} समीकरणलाई हल गर्नुहोस्। -8 बाट 10 घटाउनुहोस्।
x=-9
-18 लाई 2 ले भाग गर्नुहोस्।
x=1 x=-9
अब समिकरण समाधान भएको छ।
\left(x-3\right)\times 4-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर x -3,3 मध्ये कुनै पनि मानसँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ x+3,3-x,x-3 को लघुत्तम समापवर्त्यक \left(x-3\right)\left(x+3\right) ले गुणन गर्नुहोस्।
4x-12-\left(-\left(3+x\right)\times 5\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
x-3 लाई 4 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
4x-12-\left(-5\left(3+x\right)\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 प्राप्त गर्नको लागि -1 र 5 गुणा गर्नुहोस्।
4x-12-\left(-15-5x\right)=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-5 लाई 3+x ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
4x-12+15+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
-15-5x को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
4x+3+5x=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
3 प्राप्त गर्नको लागि -12 र 15 जोड्नुहोस्।
9x+3=x+3+\left(x-3\right)\left(x+3\right)\left(-1\right)
9x प्राप्त गर्नको लागि 4x र 5x लाई संयोजन गर्नुहोस्।
9x+3=x+3+\left(x^{2}-9\right)\left(-1\right)
x-3 लाई x+3 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
9x+3=x+3-x^{2}+9
x^{2}-9 लाई -1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
9x+3=x+12-x^{2}
12 प्राप्त गर्नको लागि 3 र 9 जोड्नुहोस्।
9x+3-x=12-x^{2}
दुवै छेउबाट x घटाउनुहोस्।
8x+3=12-x^{2}
8x प्राप्त गर्नको लागि 9x र -x लाई संयोजन गर्नुहोस्।
8x+3+x^{2}=12
दुबै छेउहरूमा x^{2} थप्नुहोस्।
8x+x^{2}=12-3
दुवै छेउबाट 3 घटाउनुहोस्।
8x+x^{2}=9
9 प्राप्त गर्नको लागि 3 बाट 12 घटाउनुहोस्।
x^{2}+8x=9
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+8x+4^{2}=9+4^{2}
2 द्वारा 4 प्राप्त गर्न x पदको गुणाङ्कलाई 8 ले भाग गर्नुहोस्। त्यसपछि 4 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+8x+16=9+16
4 वर्ग गर्नुहोस्।
x^{2}+8x+16=25
16 मा 9 जोड्नुहोस्
\left(x+4\right)^{2}=25
कारक x^{2}+8x+16। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+4\right)^{2}}=\sqrt{25}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+4=5 x+4=-5
सरल गर्नुहोस्।
x=1 x=-9
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}