मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. x
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। x-6 र x+4 को लघुत्तम समापवर्तक \left(x-6\right)\left(x+4\right) हो। \frac{3}{x-6} लाई \frac{x+4}{x+4} पटक गुणन गर्नुहोस्। \frac{4}{x+4} लाई \frac{x-6}{x-6} पटक गुणन गर्नुहोस्।
\frac{3\left(x+4\right)+4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}
\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} र \frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{3x+12+4x-24}{\left(x-6\right)\left(x+4\right)}
3\left(x+4\right)+4\left(x-6\right) लाई गुणन गर्नुहोस्।
\frac{7x-12}{\left(x-6\right)\left(x+4\right)}
3x+12+4x-24 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{7x-12}{x^{2}-2x-24}
\left(x-6\right)\left(x+4\right) लाई विस्तार गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। x-6 र x+4 को लघुत्तम समापवर्तक \left(x-6\right)\left(x+4\right) हो। \frac{3}{x-6} लाई \frac{x+4}{x+4} पटक गुणन गर्नुहोस्। \frac{4}{x+4} लाई \frac{x-6}{x-6} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)+4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)})
\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} र \frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+12+4x-24}{\left(x-6\right)\left(x+4\right)})
3\left(x+4\right)+4\left(x-6\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{\left(x-6\right)\left(x+4\right)})
3x+12+4x-24 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{x^{2}+4x-6x-24})
x-6 का प्रत्येक पदलाई x+4 का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{x^{2}-2x-24})
-2x प्राप्त गर्नको लागि 4x र -6x लाई संयोजन गर्नुहोस्।
\frac{\left(x^{2}-2x^{1}-24\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}-12)-\left(7x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-24)}{\left(x^{2}-2x^{1}-24\right)^{2}}
कुनैपनि दुई भिन्न फलनहरूको लागि, दुईवटा फलनका भागफलको डेरिभेटिभ भहरको परिमाण हो, अंशको डेरिभेटिभ अंशको परिमाणको ऋणात्मक हुन्छ, हरको डेरिभेटिभलाई सबै वर्गाकार हरले भाग गरिन्छ।
\frac{\left(x^{2}-2x^{1}-24\right)\times 7x^{1-1}-\left(7x^{1}-12\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
\frac{\left(x^{2}-2x^{1}-24\right)\times 7x^{0}-\left(7x^{1}-12\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
सरल गर्नुहोस्।
\frac{x^{2}\times 7x^{0}-2x^{1}\times 7x^{0}-24\times 7x^{0}-\left(7x^{1}-12\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
x^{2}-2x^{1}-24 लाई 7x^{0} पटक गुणन गर्नुहोस्।
\frac{x^{2}\times 7x^{0}-2x^{1}\times 7x^{0}-24\times 7x^{0}-\left(7x^{1}\times 2x^{1}+7x^{1}\left(-2\right)x^{0}-12\times 2x^{1}-12\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
7x^{1}-12 लाई 2x^{1}-2x^{0} पटक गुणन गर्नुहोस्।
\frac{7x^{2}-2\times 7x^{1}-24\times 7x^{0}-\left(7\times 2x^{1+1}+7\left(-2\right)x^{1}-12\times 2x^{1}-12\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{7x^{2}-14x^{1}-168x^{0}-\left(14x^{2}-14x^{1}-24x^{1}+24x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
सरल गर्नुहोस्।
\frac{-7x^{2}+24x^{1}-192x^{0}}{\left(x^{2}-2x^{1}-24\right)^{2}}
समान पदहरू संयोजन गर्नुहोस्।
\frac{-7x^{2}+24x-192x^{0}}{\left(x^{2}-2x-24\right)^{2}}
कुनैपनि पदका लागि t, t^{1}=t।
\frac{-7x^{2}+24x-192}{\left(x^{2}-2x-24\right)^{2}}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।