मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. m
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
गुणनखण्ड m^{3}+n^{3}। गुणनखण्ड m^{2}-n^{2}।
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(m+n\right)\left(m^{2}-mn+n^{2}\right) र \left(m+n\right)\left(m-n\right) को लघुत्तम समापवर्तक \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) हो। \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} लाई \frac{m-n}{m-n} पटक गुणन गर्नुहोस्। \frac{2m}{\left(m+n\right)\left(m-n\right)} लाई \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}} पटक गुणन गर्नुहोस्।
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} र \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right) लाई गुणन गर्नुहोस्।
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2} मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) र m-n को लघुत्तम समापवर्तक \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) हो। \frac{1}{m-n} लाई \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} पटक गुणन गर्नुहोस्।
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} and \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right) लाई गुणन गर्नुहोस्।
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3} मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} मा पहिले नै गुणन खण्ड ननिकालिएका अभिव्यञ्जकहरूको गुणन खण्ड निकाल्नुहोस्।
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
m-n लाई अंश र हर दुबैमा रद्द गर्नुहोस्।
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
\left(m+n\right)\left(m^{2}-mn+n^{2}\right) लाई विस्तार गर्नुहोस्।