मूल्याङ्कन गर्नुहोस्
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
भिन्नता w.r.t. x
\frac{-5x^{2}+8x-14}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। x-2 र x+1 को लघुत्तम समापवर्तक \left(x-2\right)\left(x+1\right) हो। \frac{2}{x-2} लाई \frac{x+1}{x+1} पटक गुणन गर्नुहोस्। \frac{3}{x+1} लाई \frac{x-2}{x-2} पटक गुणन गर्नुहोस्।
\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} र \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)}
2\left(x+1\right)+3\left(x-2\right) लाई गुणन गर्नुहोस्।
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
2x+2+3x-6 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{5x-4}{x^{2}-x-2}
\left(x-2\right)\left(x+1\right) लाई विस्तार गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। x-2 र x+1 को लघुत्तम समापवर्तक \left(x-2\right)\left(x+1\right) हो। \frac{2}{x-2} लाई \frac{x+1}{x+1} पटक गुणन गर्नुहोस्। \frac{3}{x+1} लाई \frac{x-2}{x-2} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} र \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)})
2\left(x+1\right)+3\left(x-2\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{\left(x-2\right)\left(x+1\right)})
2x+2+3x-6 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}+x-2x-2})
x-2 का प्रत्येक पदलाई x+1 का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}-x-2})
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-4)-\left(5x^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
कुनैपनि दुई भिन्न फलनहरूको लागि, दुईवटा फलनका भागफलको डेरिभेटिभ भहरको परिमाण हो, अंशको डेरिभेटिभ अंशको परिमाणको ऋणात्मक हुन्छ, हरको डेरिभेटिभलाई सबै वर्गाकार हरले भाग गरिन्छ।
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{1-1}-\left(5x^{1}-4\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
सरल गर्नुहोस्।
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2 लाई 5x^{0} पटक गुणन गर्नुहोस्।
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
5x^{1}-4 लाई 2x^{1}-x^{0} पटक गुणन गर्नुहोस्।
\frac{5x^{2}-5x^{1}-2\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{5x^{2}-5x^{1}-10x^{0}-\left(10x^{2}-5x^{1}-8x^{1}+4x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
सरल गर्नुहोस्।
\frac{-5x^{2}+8x^{1}-14x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
समान पदहरू संयोजन गर्नुहोस्।
\frac{-5x^{2}+8x-14x^{0}}{\left(x^{2}-x-2\right)^{2}}
कुनैपनि पदका लागि t, t^{1}=t।
\frac{-5x^{2}+8x-14}{\left(x^{2}-x-2\right)^{2}}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}