मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
प्रश्नोत्तरी
Arithmetic

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{2}{2\sqrt{2}+\sqrt{7}}
गुणनखण्ड 8=2^{2}\times 2। गुणनफल \sqrt{2^{2}\times 2} को वर्गमूललाई वर्गमूलहरू \sqrt{2^{2}}\sqrt{2} को गुणनफलको रूपमा पुनः लेख्नुहोस्। 2^{2} को वर्गमूल निकाल्नुहोस्।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{\left(2\sqrt{2}+\sqrt{7}\right)\left(2\sqrt{2}-\sqrt{7}\right)}
अंस र हरलाई 2\sqrt{2}-\sqrt{7} ले गुणन गरेर \frac{2}{2\sqrt{2}+\sqrt{7}} को हरलाई पुनर्गठन गर्नुहोस्।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
मानौं \left(2\sqrt{2}+\sqrt{7}\right)\left(2\sqrt{2}-\sqrt{7}\right)। गुणनलाई नियम प्रयोग गरेर वर्गहरूको फरकमा ढाल्न सकिन्छ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
\left(2\sqrt{2}\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}}
2 को पावरमा 2 हिसाब गरी 4 प्राप्त गर्नुहोस्।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{4\times 2-\left(\sqrt{7}\right)^{2}}
\sqrt{2} को वर्ग संख्या 2 हो।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{8-\left(\sqrt{7}\right)^{2}}
8 प्राप्त गर्नको लागि 4 र 2 गुणा गर्नुहोस्।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{8-7}
\sqrt{7} को वर्ग संख्या 7 हो।
\frac{2\left(2\sqrt{2}-\sqrt{7}\right)}{1}
1 प्राप्त गर्नको लागि 7 बाट 8 घटाउनुहोस्।
2\left(2\sqrt{2}-\sqrt{7}\right)
कुनै संख्यालाई एकले भाग गर्दा त्यति नै हुन्छ।
4\sqrt{2}-2\sqrt{7}
2 लाई 2\sqrt{2}-\sqrt{7} ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।