मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
भिन्नता w.r.t. x
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\frac{d}{x^{2}-2x+5}x
\frac{1}{x^{2}-2x+5}d लाई एकल भिन्नको रूपमा व्यक्त गर्नुहोस्।
\frac{dx}{x^{2}-2x+5}
\frac{d}{x^{2}-2x+5}x लाई एकल भिन्नको रूपमा व्यक्त गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{d}{x^{2}-2x+5}x)
\frac{1}{x^{2}-2x+5}d लाई एकल भिन्नको रूपमा व्यक्त गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{dx}{x^{2}-2x+5})
\frac{d}{x^{2}-2x+5}x लाई एकल भिन्नको रूपमा व्यक्त गर्नुहोस्।
\frac{\left(x^{2}-2x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(dx^{1})-dx^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}+5)}{\left(x^{2}-2x^{1}+5\right)^{2}}
कुनैपनि दुई भिन्न फलनहरूको लागि, दुईवटा फलनका भागफलको डेरिभेटिभ भहरको परिमाण हो, अंशको डेरिभेटिभ अंशको परिमाणको ऋणात्मक हुन्छ, हरको डेरिभेटिभलाई सबै वर्गाकार हरले भाग गरिन्छ।
\frac{\left(x^{2}-2x^{1}+5\right)dx^{1-1}-dx^{1}\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
\frac{\left(x^{2}-2x^{1}+5\right)dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
सरल गर्नुहोस्।
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-dx^{1}\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
x^{2}-2x^{1}+5 लाई dx^{0} पटक गुणन गर्नुहोस्।
\frac{x^{2}dx^{0}-2x^{1}dx^{0}+5dx^{0}-\left(dx^{1}\times 2x^{1}+dx^{1}\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
dx^{1} लाई 2x^{1}-2x^{0} पटक गुणन गर्नुहोस्।
\frac{dx^{2}-2dx^{1}+5dx^{0}-\left(d\times 2x^{1+1}+d\left(-2\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{dx^{2}+\left(-2d\right)x^{1}+5dx^{0}-\left(2dx^{2}+\left(-2d\right)x^{1}\right)}{\left(x^{2}-2x^{1}+5\right)^{2}}
सरल गर्नुहोस्।
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x^{1}+5\right)^{2}}
समान पदहरू संयोजन गर्नुहोस्।
\frac{\left(-d\right)x^{2}+5dx^{0}}{\left(x^{2}-2x+5\right)^{2}}
कुनैपनि पदका लागि t, t^{1}=t।
\frac{\left(-d\right)x^{2}+5d\times 1}{\left(x^{2}-2x+5\right)^{2}}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।
\frac{\left(-d\right)x^{2}+5d}{\left(x^{2}-2x+5\right)^{2}}
कुनैपनि t, t\times 1=t र 1t=t पदका लागि।