मुख्य सामग्रीमा स्किप गर्नुहोस्
w को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

35=w\left(w+2\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर w 0 सँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ w,35 को लघुत्तम समापवर्त्यक 35w ले गुणन गर्नुहोस्।
35=w^{2}+2w
w लाई w+2 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
w^{2}+2w=35
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
w^{2}+2w-35=0
दुवै छेउबाट 35 घटाउनुहोस्।
w=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 2 ले र c लाई -35 ले प्रतिस्थापन गर्नुहोस्।
w=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
2 वर्ग गर्नुहोस्।
w=\frac{-2±\sqrt{4+140}}{2}
-4 लाई -35 पटक गुणन गर्नुहोस्।
w=\frac{-2±\sqrt{144}}{2}
140 मा 4 जोड्नुहोस्
w=\frac{-2±12}{2}
144 को वर्गमूल निकाल्नुहोस्।
w=\frac{10}{2}
अब ± प्लस मानेर w=\frac{-2±12}{2} समीकरणलाई हल गर्नुहोस्। 12 मा -2 जोड्नुहोस्
w=5
10 लाई 2 ले भाग गर्नुहोस्।
w=-\frac{14}{2}
अब ± माइनस मानेर w=\frac{-2±12}{2} समीकरणलाई हल गर्नुहोस्। -2 बाट 12 घटाउनुहोस्।
w=-7
-14 लाई 2 ले भाग गर्नुहोस्।
w=5 w=-7
अब समिकरण समाधान भएको छ।
35=w\left(w+2\right)
शून्यले गरिने भाग परिभाषित नभएकाले चर w 0 सँग बराबर हुन सक्दैन। समीकरणको दुबै तर्फ w,35 को लघुत्तम समापवर्त्यक 35w ले गुणन गर्नुहोस्।
35=w^{2}+2w
w लाई w+2 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
w^{2}+2w=35
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
w^{2}+2w+1^{2}=35+1^{2}
2 द्वारा 1 प्राप्त गर्न x पदको गुणाङ्कलाई 2 ले भाग गर्नुहोस्। त्यसपछि 1 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
w^{2}+2w+1=35+1
1 वर्ग गर्नुहोस्।
w^{2}+2w+1=36
1 मा 35 जोड्नुहोस्
\left(w+1\right)^{2}=36
कारक w^{2}+2w+1। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(w+1\right)^{2}}=\sqrt{36}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
w+1=6 w+1=-6
सरल गर्नुहोस्।
w=5 w=-7
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।