मुख्य सामग्रीमा स्किप गर्नुहोस्
मूल्याङ्कन गर्नुहोस्
Tick mark Image
विस्तार गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{2}a+\frac{2}{3}b\right)^{3} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} प्रयोग गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{2}a-\frac{2}{3}b लाई \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
मानौं \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)। गुणनलाई नियम प्रयोग गरेर वर्गहरूको फरकमा ढाल्न सकिन्छ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{4}a^{2}\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
2 को पावरमा \frac{1}{4} हिसाब गरी \frac{1}{16} प्राप्त गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{4}{9}b^{2}\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
2 को पावरमा \frac{4}{9} हिसाब गरी \frac{16}{81} प्राप्त गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16}a^{4}-\frac{16}{81}b^{4} को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 प्राप्त गर्नको लागि \frac{1}{16}a^{4} र -\frac{1}{16}a^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 प्राप्त गर्नको लागि -\frac{16}{81}b^{4} र \frac{16}{81}b^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
-\frac{1}{3}ab लाई \frac{1}{2}a^{2}+\frac{1}{9}b^{2} ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
0 प्राप्त गर्नको लागि \frac{1}{6}a^{3}b र -\frac{1}{6}a^{3}b लाई संयोजन गर्नुहोस्।
-\frac{1}{3}ab^{3}
-\frac{1}{3}ab^{3} प्राप्त गर्नको लागि -\frac{8}{27}ab^{3} र -\frac{1}{27}ab^{3} लाई संयोजन गर्नुहोस्।
\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{2}a+\frac{2}{3}b\right)^{3} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} प्रयोग गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{2}a-\frac{2}{3}b लाई \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
मानौं \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)। गुणनलाई नियम प्रयोग गरेर वर्गहरूको फरकमा ढाल्न सकिन्छ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{1}{4}a^{2}\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
2 को पावरमा \frac{1}{4} हिसाब गरी \frac{1}{16} प्राप्त गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\left(\frac{4}{9}b^{2}\right)^{2} लाई विस्तार गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
2 को पावरमा \frac{4}{9} हिसाब गरी \frac{16}{81} प्राप्त गर्नुहोस्।
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
\frac{1}{16}a^{4}-\frac{16}{81}b^{4} को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 प्राप्त गर्नको लागि \frac{1}{16}a^{4} र -\frac{1}{16}a^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
0 प्राप्त गर्नको लागि -\frac{16}{81}b^{4} र \frac{16}{81}b^{4} लाई संयोजन गर्नुहोस्।
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
-\frac{1}{3}ab लाई \frac{1}{2}a^{2}+\frac{1}{9}b^{2} ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
0 प्राप्त गर्नको लागि \frac{1}{6}a^{3}b र -\frac{1}{6}a^{3}b लाई संयोजन गर्नुहोस्।
-\frac{1}{3}ab^{3}
-\frac{1}{3}ab^{3} प्राप्त गर्नको लागि -\frac{8}{27}ab^{3} र -\frac{1}{27}ab^{3} लाई संयोजन गर्नुहोस्।