मूल्याङ्कन गर्नुहोस्
14a^{4}+2b+7
विस्तार गर्नुहोस्
14a^{4}+2b+7
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
मानौं \left(2-a\right)\left(2+a\right)। गुणनलाई नियम प्रयोग गरेर वर्गहरूको फरकमा ढाल्न सकिन्छ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 2 वर्ग गर्नुहोस्।
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2 प्राप्त गर्नको लागि 2 बाट 4 घटाउनुहोस्।
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(2-a^{2}\right)^{3} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} प्रयोग गर्नुहोस्।
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 6 प्राप्त गर्न 2 र 3 गुणन गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{2}-b+1 वर्ग गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{4} प्राप्त गर्नको लागि 6a^{4} र -4a^{4} लाई संयोजन गर्नुहोस्।
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
-16a^{2} प्राप्त गर्नको लागि -12a^{2} र -4a^{2} लाई संयोजन गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
7 प्राप्त गर्नको लागि 1 बाट 8 घटाउनुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(a^{2}+4\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p+q\right)^{2}=p^{2}+2pq+q^{2} प्रयोग गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
a^{2} लाई a^{4}+8a^{2}+16 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
0 प्राप्त गर्नको लागि -a^{6} र a^{6} लाई संयोजन गर्नुहोस्।
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
10a^{4} प्राप्त गर्नको लागि 2a^{4} र 8a^{4} लाई संयोजन गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
0 प्राप्त गर्नको लागि -16a^{2} र 16a^{2} लाई संयोजन गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(b-2a^{2}\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p-q\right)^{2}=p^{2}-2pq+q^{2} प्रयोग गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
0 प्राप्त गर्नको लागि -b^{2} र b^{2} लाई संयोजन गर्नुहोस्।
7+10a^{4}+2b+4a^{4}
0 प्राप्त गर्नको लागि 4ba^{2} र -4ba^{2} लाई संयोजन गर्नुहोस्।
7+14a^{4}+2b
14a^{4} प्राप्त गर्नको लागि 10a^{4} र 4a^{4} लाई संयोजन गर्नुहोस्।
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
मानौं \left(2-a\right)\left(2+a\right)। गुणनलाई नियम प्रयोग गरेर वर्गहरूको फरकमा ढाल्न सकिन्छ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 2 वर्ग गर्नुहोस्।
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2 प्राप्त गर्नको लागि 2 बाट 4 घटाउनुहोस्।
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(2-a^{2}\right)^{3} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} प्रयोग गर्नुहोस्।
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 6 प्राप्त गर्न 2 र 3 गुणन गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{2}-b+1 वर्ग गर्नुहोस्।
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1 को विपरितार्थी शब्द पत्ता लगाउन, हरेक शब्दको विपरितार्थी शब्द पत्ता लगाउनुहोस्।
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{4} प्राप्त गर्नको लागि 6a^{4} र -4a^{4} लाई संयोजन गर्नुहोस्।
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
-16a^{2} प्राप्त गर्नको लागि -12a^{2} र -4a^{2} लाई संयोजन गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
7 प्राप्त गर्नको लागि 1 बाट 8 घटाउनुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(a^{2}+4\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p+q\right)^{2}=p^{2}+2pq+q^{2} प्रयोग गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
a^{2} लाई a^{4}+8a^{2}+16 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
0 प्राप्त गर्नको लागि -a^{6} र a^{6} लाई संयोजन गर्नुहोस्।
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
10a^{4} प्राप्त गर्नको लागि 2a^{4} र 8a^{4} लाई संयोजन गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
0 प्राप्त गर्नको लागि -16a^{2} र 16a^{2} लाई संयोजन गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(b-2a^{2}\right)^{2} लाई विस्तृत गर्न बाइनोमियल थ्योरम \left(p-q\right)^{2}=p^{2}-2pq+q^{2} प्रयोग गर्नुहोस्।
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
अर्को पावरमा पावरको संख्या बढाउन घातांकहरू गुणन गर्नुहोस्। 4 प्राप्त गर्न 2 र 2 गुणन गर्नुहोस्।
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
0 प्राप्त गर्नको लागि -b^{2} र b^{2} लाई संयोजन गर्नुहोस्।
7+10a^{4}+2b+4a^{4}
0 प्राप्त गर्नको लागि 4ba^{2} र -4ba^{2} लाई संयोजन गर्नुहोस्।
7+14a^{4}+2b
14a^{4} प्राप्त गर्नको लागि 10a^{4} र 4a^{4} लाई संयोजन गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}