Langkau ke kandungan utama
Microsoft
|
Math Solver
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Asas
algebra
trigonometri
kalkulus
statistik
matriks
Aksara
Nilaikan
0
Kuiz
Limits
5 masalah yang serupa dengan:
\lim_{ x \rightarrow 0 } 5x
Masalah Sama dari Carian Web
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Lagi Item
Kongsi
Salin
Disalin ke papan klip
Masalah yang serupa
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Kembali ke atas