Langkau ke kandungan utama
Microsoft
|
Math Solver
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Asas
algebra
trigonometri
kalkulus
statistik
matriks
Aksara
Nilaikan
\text{Divergent}
Kuiz
Limits
5 masalah yang serupa dengan:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Masalah Sama dari Carian Web
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Lagi Item
Kongsi
Salin
Disalin ke papan klip
Masalah yang serupa
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Kembali ke atas