Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Whakaoti mō x
x=2\pi n_{1}+\frac{\pi }{2}
n_{1}\in \mathrm{Z}
Graph
Kauwhatatia ngā Taha e Rua ki te Ahu-2
Kauwhatatia ki te Ahu-2
Pātaitai
Trigonometry
\sin ( x ) = 1
Ngā Raru Ōrite mai i te Rapu Tukutuku
Particular integral for x\sin(1-x)?
https://math.stackexchange.com/questions/1265354/particular-integral-for-x-sin1-x
Try splitting up \sin(1-x) using the difference formula for \sin - \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \! This should tell you what your particular ...
Limits of the solutions to x\sin x = 1
https://math.stackexchange.com/questions/719244/limits-of-the-solutions-to-x-sin-x-1
Because you are always evaluating the limit, this is an asymptotic expansion of the explicit expression for the solutions. Write x=2\pi n +\epsilon You get \sin \epsilon=\frac{1}{2\pi n +\epsilon} ...
How to determine the solution to \sin x = 8 in the complex numbers
https://www.quora.com/How-do-you-determine-the-solution-to-sin-x-8-in-the-complex-numbers
Let’s just solve the general \sin x = t and later set t=8. e^{ix}= \cos x + i \sin x e^{-ix} = \cos x - i \sin x e^{ix} - e^{-ix} = 2i \sin x \sin x = \dfrac{e^{ix} - e^{-ix}}{2i} ...
Find the critical points of: y = x + \cos(x)
https://math.stackexchange.com/q/124497
You're essentially there: y = x + \cos(x) = \frac\pi2 + 2\pi k + \cos(\frac\pi2 + 2\pi k) = \frac\pi2 + 2\pi k. There are infinitely many y-values, one for each k \in \mathbb{Z}.
Solve \cos 2x - \sin x = 0 for 0 \le x \le 360
https://math.stackexchange.com/questions/1778416/solve-cos-2x-sin-x-0-for-0-le-x-le-360
From 2 \sin x=1, you should have \sin x=0.5. Sine is positive in the first two quadrants, you should obtain 30^{\circ} and 150^{\circ} as your solution as well.
Trigonometric function solutions within an interval
https://math.stackexchange.com/q/1005511
YOU are right. I cannot find any errors.
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
Ngā Raru Ōrite
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Hoki ki runga