Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Whakaoti mō x
x=\frac{2\pi n_{1}}{3}+\frac{2\pi }{9}\text{, }n_{1}\in \mathrm{Z}
x=\frac{2\pi n_{1}}{3}+\frac{4\pi }{9}\text{, }n_{1}\in \mathrm{Z}
Graph
Kauwhatatia ngā Taha e Rua ki te Ahu-2
Kauwhatatia ki te Ahu-2
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
\cos ( 3x + \pi ) = 0.5
Ngā Raru Ōrite mai i te Rapu Tukutuku
How do you prove the reduction identities \displaystyle{\cos{{\left({x}+\pi\right)}}}=-{\cos{{\left({x}\right)}}} using a unit circle diagram?
https://socratic.org/questions/how-do-you-prove-the-reduction-identities-cos-x-pi-cos-x-using-a-unit-circle-dia
I am not sure this little diagram is enough but... Explanation: Have a look:
How to find all solutions of \cos (3x) + \cos (x) = 0 in [-\pi,\pi]
https://www.quora.com/How-do-I-find-all-solutions-of-cos-3x-+-cos-x-0-in-pi-pi
cos 3x+cos x=0 =>2 cos 2x cos x=0 =>cos 2x=0; or ; cos x=0 For x belong to[-pi,pi]; cos x=0 =>x = pi/2 , -pi/2 , 3 pi/2 , -3 pi/2 ...
How do you find the range of \displaystyle{f{{\left({x}\right)}}}={5}{\cos{{\left({x}+\pi\right)}}}+{3} ?
https://socratic.org/questions/how-do-you-find-the-range-of-f-x-5cos-x-pi-3
Alan P. Apr 15, 2015 \displaystyle{\cos{{\left({x}+\pi\right)}}} has a range of \displaystyle{\left[-{1},+{1}\right]} (because \displaystyle{\cos{{(}}} anything \displaystyle{)} ...
How to solve 0=\cos{2x}+\cos x
https://math.stackexchange.com/questions/859100/how-to-solve-0-cos2x-cos-x
remember the identity \cos (2x)=\cos^2 (x)-\sin^2(x)=2\cos ^2 (x)-1. You want to solve 2\cos ^2 (x)-1+\cos (x)=0. Let t= \cos (x). The question 2t^2+t-1=0 and is easier to solve. Can you take ...
How do you simplify \displaystyle{2}{\cos{{\left({10}{x}\right)}}}+{4}{\cos{{\left({5}{x}\right)}}} ?
https://socratic.org/questions/how-do-you-simplify-2cos-10x-4cos-5x
Simplify y = 2cos (10x) + 4cos (5x) Ans: (cos 5x - 1 - sqrt3)(cos 5x + 1 - sqrt3) Explanation: Replace 2cos (10x) by \displaystyle{4}{{\cos}^{{2}}{\left({5}{x}\right)}}-{2} , we get: y = 4cos^2 ...
How do you solve \displaystyle{\cos{{\left({x}\right)}}}{\left({\cos{{\left({x}\right)}}}-{1}\right)}={0} ?
https://socratic.org/questions/how-do-you-solve-cos-x-cos-x-1-0
\displaystyle{x}={0}+{2}{k}\pi\ \text{ or }\ {x}=\pi+{2}{k}\pi Explanation: \displaystyle{\left({\cos{{x}}}\right)}{\left({\cos{{x}}}\right)}-{1}={0}\ \text{ can be expressed as} \displaystyle{{\cos}^{{2}}{x}}={1} ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
Ngā Raru Ōrite
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Hoki ki runga