Aromātai
-\frac{5}{2\left(z-2\right)^{2}}
Kimi Pārōnaki e ai ki z
\frac{5}{\left(z-2\right)^{3}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2z^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}z}(z^{1}+3)-\left(z^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}z}(2z^{1}-4)}{\left(2z^{1}-4\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2z^{1}-4\right)z^{1-1}-\left(z^{1}+3\right)\times 2z^{1-1}}{\left(2z^{1}-4\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2z^{1}-4\right)z^{0}-\left(z^{1}+3\right)\times 2z^{0}}{\left(2z^{1}-4\right)^{2}}
Mahia ngā tātaitanga.
\frac{2z^{1}z^{0}-4z^{0}-\left(z^{1}\times 2z^{0}+3\times 2z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2z^{1}-4z^{0}-\left(2z^{1}+3\times 2z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2z^{1}-4z^{0}-\left(2z^{1}+6z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
Mahia ngā tātaitanga.
\frac{2z^{1}-4z^{0}-2z^{1}-6z^{0}}{\left(2z^{1}-4\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(2-2\right)z^{1}+\left(-4-6\right)z^{0}}{\left(2z^{1}-4\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-10z^{0}}{\left(2z^{1}-4\right)^{2}}
Tangohia te 2 i 2 me te 6 i te -4.
\frac{-10z^{0}}{\left(2z-4\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-10}{\left(2z-4\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.