Tīpoka ki ngā ihirangi matua
Microsoft
|
Math Solver
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Whakatau
Whakaharatau
Tākaro
Ngā Kaupapa
Pre-Algebra
Mean
Aratau:
Āhuatanga Noa Nui Rawa
He maha rawa ngā mea noa iho
Raupapa Mahi
Ngā Hautanga
Ngā Hautanga Whāranu
Āhuatanga Matua
Ngā Exponents
Ngā Radicals
Algebra
Paheko pēnei i ngā Ture
Whakaoti mō tētahi Tāupe
Āhuatanga
Whakaroha
Evaluate Fractions
Whārite Paerangi
Ngā Whārite Tapawhā
Ōritetanga
Ngā Pūnaha Whārite
Matrices
Āhuahanga
Whakangāwari
Evaluate
Ngā Graphs
Whakatau Whārite
Tātaitai
Ngā Āhuatanga
Integrals
Ngā Tepe
Ngā Tāuru Algebra
Ngā Tāuru Āhuahanga
Ngā Tāuru Tātai
Ngā Tāuru Poukapa
Taketake
papara
ahuatoru
tatau
Ngā tatauranga
matrices
Ngā Pūāhua
Aromātai
4
Tirohia ngā hipanga rongoā
Ngā Upane e Whakamahi ana i te Tautuhinga o te Pārōnaki
\frac { d } { d x } ( 4 x )
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
4x^{1-1}
Tango 1 mai i 1.
4x^{0}
Mō tētahi kupu t mahue te 0, t^{0}=1.
4\times 1
Mō tētahi kupu t, t\times 1=t me 1t=t.
4
Kimi Pārōnaki e ai ki x
0
Pātaitai
Differentiation
5 raruraru e ōrite ana ki:
\frac { d } { d x } ( 4 x )
Ngā Raru Ōrite mai i te Rapu Tukutuku
How to calculate \frac {\mathrm d}{\mathrm dx} {x!} ?
https://math.stackexchange.com/questions/2097127/how-to-calculate-frac-mathrm-d-mathrm-dx-x
It does not a priori make sense to differentiate x! because the domain of x\mapsto x! is \mathbf N, not \mathbf R (or anything else supporting a good notion of differentiation, like \mathbf C ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Differentiating the polynomial x^3 - 4x +6
https://math.stackexchange.com/q/65332
Everything is correct, except that the derivative of a constant (like 6) is always 0. You can still see this fact from the power rule. Write 6 as 6x^0. The power rule says that the derivative is 6 \cdot 0 x^{-1} ...
How do I handle dx in u-substitution?
https://math.stackexchange.com/questions/927265/how-do-i-handle-dx-in-u-substitution
If you choose u=x^2+1, then taking the derivative with respect to x gives: \frac{\textrm{d}u}{\textrm{d}x}=2x. Therefore \textrm{d}u=2x\textrm{d}x or x\textrm{d}x=\textrm{d}u/2. Now your ...
Ētahi atu Ngā tūemi
Tohaina
Tārua
Kua tāruatia ki te papatopenga
4x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
4x^{0}
Tango 1 mai i 1.
4\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
4
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Raru Ōrite
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
Hoki ki runga