Whakaoti mō x
x=5
Graph
Pātaitai
Quadratic Equation
x^2-10x+25=0
Tohaina
Kua tāruatia ki te papatopenga
a+b=-10 ab=25
Hei whakaoti i te whārite, whakatauwehea te x^{2}-10x+25 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-25 -5,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
-1-25=-26 -5-5=-10
Tātaihia te tapeke mō ia takirua.
a=-5 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x-5\right)\left(x-5\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=5
Hei kimi i te otinga whārite, whakaotia te x-5=0.
a+b=-10 ab=1\times 25=25
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-25 -5,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
-1-25=-26 -5-5=-10
Tātaihia te tapeke mō ia takirua.
a=-5 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Tuhia anō te x^{2}-10x+25 hei \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Tauwehea te x i te tuatahi me te -5 i te rōpū tuarua.
\left(x-5\right)\left(x-5\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=5
Hei kimi i te otinga whārite, whakaotia te x-5=0.
x^{2}-10x+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Whakareatia -4 ki te 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Tāpiri 100 ki te -100.
x=-\frac{-10}{2}
Tuhia te pūtakerua o te 0.
x=\frac{10}{2}
Ko te tauaro o -10 ko 10.
x=5
Whakawehe 10 ki te 2.
x^{2}-10x+25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\left(x-5\right)^{2}=0
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=0 x-5=0
Whakarūnātia.
x=5 x=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=5
Kua oti te whārite te whakatau. He ōrite ngā whakatau.