Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m=3mm+3\left(m-1\right)
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3m, arā, te tauraro pātahi he tino iti rawa te kitea o 3,m.
m=3m^{2}+3\left(m-1\right)
Whakareatia te m ki te m, ka m^{2}.
m=3m^{2}+3m-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te m-1.
m-3m^{2}=3m-3
Tangohia te 3m^{2} mai i ngā taha e rua.
m-3m^{2}-3m=-3
Tangohia te 3m mai i ngā taha e rua.
-2m-3m^{2}=-3
Pahekotia te m me -3m, ka -2m.
-2m-3m^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-3m^{2}-2m+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\times 3}}{2\left(-3\right)}
Pūrua -2.
m=\frac{-\left(-2\right)±\sqrt{4+12\times 3}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
m=\frac{-\left(-2\right)±\sqrt{4+36}}{2\left(-3\right)}
Whakareatia 12 ki te 3.
m=\frac{-\left(-2\right)±\sqrt{40}}{2\left(-3\right)}
Tāpiri 4 ki te 36.
m=\frac{-\left(-2\right)±2\sqrt{10}}{2\left(-3\right)}
Tuhia te pūtakerua o te 40.
m=\frac{2±2\sqrt{10}}{2\left(-3\right)}
Ko te tauaro o -2 ko 2.
m=\frac{2±2\sqrt{10}}{-6}
Whakareatia 2 ki te -3.
m=\frac{2\sqrt{10}+2}{-6}
Nā, me whakaoti te whārite m=\frac{2±2\sqrt{10}}{-6} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{10}.
m=\frac{-\sqrt{10}-1}{3}
Whakawehe 2+2\sqrt{10} ki te -6.
m=\frac{2-2\sqrt{10}}{-6}
Nā, me whakaoti te whārite m=\frac{2±2\sqrt{10}}{-6} ina he tango te ±. Tango 2\sqrt{10} mai i 2.
m=\frac{\sqrt{10}-1}{3}
Whakawehe 2-2\sqrt{10} ki te -6.
m=\frac{-\sqrt{10}-1}{3} m=\frac{\sqrt{10}-1}{3}
Kua oti te whārite te whakatau.
m=3mm+3\left(m-1\right)
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3m, arā, te tauraro pātahi he tino iti rawa te kitea o 3,m.
m=3m^{2}+3\left(m-1\right)
Whakareatia te m ki te m, ka m^{2}.
m=3m^{2}+3m-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te m-1.
m-3m^{2}=3m-3
Tangohia te 3m^{2} mai i ngā taha e rua.
m-3m^{2}-3m=-3
Tangohia te 3m mai i ngā taha e rua.
-2m-3m^{2}=-3
Pahekotia te m me -3m, ka -2m.
-3m^{2}-2m=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3m^{2}-2m}{-3}=-\frac{3}{-3}
Whakawehea ngā taha e rua ki te -3.
m^{2}+\left(-\frac{2}{-3}\right)m=-\frac{3}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
m^{2}+\frac{2}{3}m=-\frac{3}{-3}
Whakawehe -2 ki te -3.
m^{2}+\frac{2}{3}m=1
Whakawehe -3 ki te -3.
m^{2}+\frac{2}{3}m+\left(\frac{1}{3}\right)^{2}=1+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{2}{3}m+\frac{1}{9}=1+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{2}{3}m+\frac{1}{9}=\frac{10}{9}
Tāpiri 1 ki te \frac{1}{9}.
\left(m+\frac{1}{3}\right)^{2}=\frac{10}{9}
Tauwehea m^{2}+\frac{2}{3}m+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{1}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{1}{3}=\frac{\sqrt{10}}{3} m+\frac{1}{3}=-\frac{\sqrt{10}}{3}
Whakarūnātia.
m=\frac{\sqrt{10}-1}{3} m=\frac{-\sqrt{10}-1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.