Skip ໄປຫາເນື້ອຫາຫຼັກ
Microsoft
|
Math Solver
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ພື້ນຖານ
algebra
trigonometry
calculus
ສະຖິຕິ
matrices
ຕົວອັກສອນ
ປະເມີນ
\text{Divergent}
Quiz
Limits
5 ບັນຫາທີ່ຄ້າຍຄືກັນກັບ:
\lim_{ x \rightarrow 0 } \frac{2}{x}
ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
ລາຍການ
ແບ່ງປັນ
ສໍາເນົາ
ສໍາເນົາຄລິບ
ບັນຫາທີ່ຄ້າຍຄືກັນ
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
ກັບຄືນສູ່ຍອດ