Skip ໄປຫາເນື້ອຫາຫຼັກ
Microsoft
|
Math Solver
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ແກ້
ການປະຕິບັດ
ຫຼິ້ນ
ຫົວຂໍ້
Pre-Algebra
Mean
Mode
ປັດໄຈທົ່ວໄປທີ່ຍິ່ງໃຫຍ່ທີ່ສຸດ
ຫນ້ອຍທີ່ສຸດທົ່ວໄປຫຼາຍ
ລະບຽບການດໍາເນີນງານ
ສ່ວນຍ່ອຍ
ສ່ວນປະກອບປະສົມ
ປັດຈຸບັນ
Exponents
Radicals
Algebra
Combine Like Terms
ແກ້ໄຂສໍາລັບVariable
ປັດໃຈ
ຂະຫຍາຍ
ປະເມີນຜົນສ່ວນປະກອບ
ສະສົມLinear Equations
ສະສົມQuadratic
ຄວາມບໍ່ສະເຫມີພາບ
ລະບົບຂອງEquations
ມັດທຣີສ
Trigonometry
ລຽບງ່າຍ
ປະເມີນຜົນ
Graphs
ແກ້ໄຂສະສົມ
Calculus
ຜະລິດຕະພັນ
Integrals
ຂີດຈໍາກັດ
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
ພື້ນຖານ
algebra
trigonometry
calculus
ສະຖິຕິ
matrices
ຕົວອັກສອນ
ປະເມີນ
\infty
Quiz
Limits
5 ບັນຫາທີ່ຄ້າຍຄືກັນກັບ:
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
ລາຍການ
ແບ່ງປັນ
ສໍາເນົາ
ສໍາເນົາຄລິບ
ບັນຫາທີ່ຄ້າຍຄືກັນ
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
ກັບຄືນສູ່ຍອດ